首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The importance of survival and growth variations early in life for population dynamics depends on the degrees of compensatory density dependence and size dependence in survival at later life stages. Quantifying density‐ and size‐dependent mortality at different juvenile stages is therefore important to understand and potentially predict the recruitment to the population. We applied a statistical state‐space modelling approach to analyse time series of abundance and mean body size of larval and juvenile fish. The focus was to identify the importance of abundance and body size for growth and survival through successive larval and juvenile age intervals, and to quantify how the dynamics propagate through the early life to influence recruitment. We thus identified both relevant ages and mechanisms (i.e. density dependence and size dependence in survival and growth) linking recruitment variability to early life dynamics. The analysis was conducted on six economically and ecologically important fish populations from cold temperate and sub‐arctic marine ecosystems. Our results underscore the importance of size for survival early in life. The comparative analysis suggests that size‐dependent mortality and density‐dependent growth frequently occur at a transition from pelagic to demersal habitats, which may be linked to competition for suitable habitat. The generality of this hypothesis warrants testing in future research.  相似文献   

2.
Fish are increasingly exposed to anthropogenic stressors from human developments and activities such as agriculture, urbanization, pollution and fishing. Lethal impacts of these stressors have been studied but the potential sublethal impacts, such as behavioural changes or reduced growth and reproduction, have often been overlooked. Unlike mortality, sublethal impacts are broad and difficult to quantify experimentally. As a result, sublethal impacts are often ignored in regulatory frameworks and management decisions. Building on established fish bioenergetic models, we present a general method for using the population consequences of disturbance framework to investigate how stressors influence ecologically relevant life processes of fish. We partition impact into the initial energetic cost of attempts to escape from the stressor, followed by the energetic impacts of any injury or behavioural change, and their consequent effects on life processes. As a case study, we assess the sublethal effects of catch and release angling for the European sea bass (Dicentrachus labrax, Moronidae), a popular target species for recreational fishers. The energy budget model described is not intended to replace existing experimental approaches but does provide a simple way to account for sublethal impacts in assessment of the impact of recreational fisheries and aid development of robust management approaches. There is potential to apply our energy budget approach to investigate a broad range of stressors and cumulative impacts for many fish species while also using individual‐based models to estimate population‐level impacts.  相似文献   

3.
Abstract – Using data from an ongoing study of juvenile Atlantic salmon growth and survival in tributaries of the Connecticut River, USA, we compare standard population-level approaches to those focusing on individuals. We highlight the potential benefits of resampling individually tagged stream fish as compared to standard approaches. Specifically we focus on growth, survival, movements and population estimation. The advantages of estimating sizes and growth rates from individual size trajectories include obtaining growth histories and the ability to perform retrospective analysis of the consequences of different life-history strategies. An example might be the patterns of growth leading to either early maturity or migration. Resampling known individuals is the only way we know to chart both short-term and long-term movements and to assign growth and mortality consequences to such movements. Finally, individual-level data permit robust estimation of survival and density/abundance using methods such as Cormack/Jolly-Seber. The results indicate that population estimates were about 10% lower using individual data than using population data, that survival from sample to sample was typically >90%, that the majority of recaptured fish did not move during the summer, that growth was rapid during spring and most fish lost mass during the summer and that growth trajectories for maturing and non-maturing fish showed substantially different patterns. An individual-based approach to stream fish ecology provides the opportunity to explore the mechanisms responsible for population-level patterns but comes at the cost of significant field effort. Tradeoffs between increased data resolution and the effort required to obtain the data must be considered before undertaking individual-based field studies of stream fishes. NOTE  相似文献   

4.
5.
We used modified Leslie matrix models to explore the life history of Atlantic menhaden ( Brevoortia tyrannus ). By examining the sensitivity of long-term population growth rates to changes in vital rates, we identified those life history components which can cause large population level responses. Our models subdivide the first year of life into five stages (eggs, early larvae, late larvae, juveniles, and 'peanuts' or subadults), and population growth rate responds most strongly to changes in juvenile and late larval stages. The relative ranking between these stages is dependent on the magnitude of mortality during the prejuvenile stages relative to juvenile mortality. An examination of low-level model parameters indicates that the population growth rate is influenced by the growth and mortality rates during the time when young-of-the-year menhaden are gaining access to and residing in the estuaries. Sensitivity to changes in many adult metrics, such as fishing mortality, were relatively low. We conclude that a better understanding of biotic and abiotic factors that influence the late larval and juvenile stages will further our understanding of population dynamics in this species.  相似文献   

6.
The relationship between the biomass of reproductively mature individuals (spawning stock) and the resulting offspring added to the population (recruitment), the stock–recruitment relationship, is a fundamental and challenging problem in all of population biology. The steepness of this relationship is commonly defined as the fraction of recruitment from an unfished population obtained when the spawning stock biomass is 20% of its unfished level. Since its introduction about 20 years ago, steepness has become widely used in fishery management, where it is usually treated as a statistical quantity. Here, we investigate the reproductive ecology of steepness, using both unstructured and age-structured models. We show that if one has sufficient information to construct a density-independent population model (maximum per capita productivity and natural mortality for the unstructured case or maximum per capita productivity, natural mortality and schedules of size and maturity at age for the structured model) then one can construct a point estimate for steepness. Thus, steepness cannot be chosen arbitrarily. If one assumes that the survival of recruited individuals fluctuates within populations, it is possible, by considering the early life history, to construct a prior distribution for steepness from this same demographic information. We develop the ideas for both compensatory (Beverton–Holt) and over-compensatory (Ricker) stock–recruitment relationships. We illustrate our ideas with an example concerning bluefin tuna ( Thunnus thynnus/orientalis , Scombridae). We show that assuming that steepness is unity when recruitment is considered to be environmentally driven is not biologically consistent, is inconsistent with a precautionary approach, and leads to the wrong scientific inference (which also applies for assigning steepness any other single value).  相似文献   

7.
Abstract  This paper summarises recent peer-reviewed literature addressing the effects of catch-and-release angling on black bass, Micropterus spp., to facilitate management and conservation of these fish. Traditionally, the effects of catch and release have been evaluated by measuring mortality. Many recent studies have measured sublethal effects on physiology and behaviour. There is also greater emphasis on adding more realism to sublethal catch-and-release experiments through angler involvement in research activities and by conducting studies in the field rather than in laboratory environments. Owing to these advances, there have been a number of recent findings, which are summarised here, related to air exposure, gear (e.g. circle hooks) and the weigh-in procedure that are particularly relevant to black bass anglers, tournament organisers and fishery managers. Additional research is particularly needed for: (1) population-level effects of angling for nesting fish; (2) population-level effects of tournament-associated mortality; (3) effectiveness of livewell additives for enhancing survival; (4) consequences of fish displacement in competitive events; (5) effects of weigh-in procedures and other organisational issues on fish condition and survival; and (6) reducing barotrauma.  相似文献   

8.
Fish are frequently exposed to paralytic shellfish toxins (PSTs) derived from harmful algal blooms (HAB). PSTs are potent neurotoxins with strong effects on fish at multiple trophic levels. Here, we examine the historical and contemporary mass mortality events combining with the available data on response of fish to PSTs' exposure. The data show that fish are negatively affected by these natural toxins on a recurring basis. Transient effects of PSTs have also been observed in fish and although difficult to quantify, these sublethal effects can affect foraging and predation avoidance. Additionally, the spatiotemporal overlapping of fish spawning and HAB can also be critical for fish survival and fisheries recruitment. Exposure of fish in their early life stages to dissolved toxins in the water column has also been identified as a risk factor for fish survival. In the context of global climate change, where PSTs are likely to become increasingly important, new insights and a synthesis of up‐to‐date information on fish response to PSTs and the risk associated with toxic dinoflagellate blooms are presented.  相似文献   

9.
Fish eggs and larvae are often subject to very high mortality, and variation in early life survival can be important for population dynamics. Although longnose suckers (Catostomus catostomus) are widespread in northern North America, little is known about their early life history. We examined fecundity and early larval survivorship during sucker spawning events in three small Lake Michigan tributaries. Although egg deposition varied 25% among spawning events, estimated larval export to the lake varied over 25,000‐fold from around 1000 to 26 million. Based on variation in environmental conditions across years, it appears that spring flow and temperature may be important determinants of egg survival to larval outmigration. Larval age data suggest that most individuals that survived to outmigration hatched during a 2‐day period despite adult spawning across at least 10 days. Most larvae spent <2 weeks in the stream and emigrated around the time of transition from endogenous to exogenous feeding before substantial growth occurred. In two of three cases, larvae drifted exclusively at night; however, high drift rates occurred during both day and night in the case where larvae were very abundant, suggesting density‐dependent drift behaviour. Our results indicate that survival in tributary streams from egg deposition to larval export is highly variable in longnose suckers. These large differences in early life survival may translate into variability in recruitment, thereby influencing population structure and dynamics.  相似文献   

10.
Climate strongly influences the population dynamics of many species, but intrinsic and extrinsic factors such as density‐dependence and anthropogenic impacts can confound the effects of climate. Further, the temporal scale of climate response is determined by the unique characteristics of a species’ life history, and determining the most appropriate climate indicator at the proper scale is a challenge faced by population ecologists. We focused on how climate influences juvenile survival of bocaccio (Sebastes paucispinis), a threatened Pacific rockfish, because its abundance has declined >90% in the last 25 years, ostensibly as the result of overfishing. Bocaccio recruitment is episodic, with strong recruitment events apparently related to climate conditions. We developed a sequence of models that related log of juvenile survival to the predictor variables population density and climate, as measured by the Northern Oscillation Index. A model that contained only population density as a predictor variable explained only 1.4% of the variance, while a model that included only climate indices explained 52%. Including density additively with climate did not improve model fit. However, a model that included an interaction between density and climate explained more than 68% of the variance. In addition, models that represented climate as monthly indices fit the juvenile survival data much better than those that averaged climate over 2‐ or 3‐month periods. Our results suggest that climate affects bocaccio recruitment as a series of pulses corresponding to particular life‐history events, with population density mediating the magnitude of the climate effect during the settlement stage.  相似文献   

11.
鱼类早期发育阶段是其生活史中的关键时期之一,生理、形态学变化剧烈,死亡率极高。研究鱼类早期发育阶段的生长规律及其生理特性,可为了解鱼类早期阶段的致死因子提供理论依据,有助于提高苗种阶段的生长率和成活率,也对制定合理的早期培育策略具有重要的指导意义。异速生长模式对确定仔鱼的养殖模式有重要的指示作用,鱼类在早期阶段会优先发育与生命活动关系较密切的器官,以期达到较高的早期成活率。RNA/DNA是评价鱼类早期发育阶段生长率的有效指标,也可用于评价仔稚鱼的生长潜力、营养状况、饲料营养水平以及确定关键期。研究仔稚鱼消化酶的发生和演变有助于深入了解鱼类在个体发育早期的消化生理,有助于选择适口饵料和制定投喂策略。因此,本文综述了鱼类早期发育阶段的异速生长模式、核酸及蛋白含量变化规律以及消化酶的发生和变化,为鱼类早期阶段健康养殖的发展提供依据。  相似文献   

12.
Early life stages of fish (eggs and larvae) are particularly vulnerable with mortality rates of up to 99% recorded for a large number of species. High mortality rates result from the limited swimming ability of larvae preventing them from escaping sub-optimal environmental conditions, predators or low prey density areas. In this context, estuaries are key nursery areas for larval and juvenile fish. Estuarine habitats offer environmental conditions favourable to the survival and growth of early stages, through abundant good-quality prey and protection from predators. A vast literature on larvae occurring in temperate estuaries exists, but an overall perspective is lacking. The occurrence of fish larvae in temperate estuaries depends on several factors. First, the choice of spawning time and location is primordial, as they have evolved to optimise the entry and the retention of larvae in the estuary as well as the conditions experienced by young stages. Secondly, larval growth and survival depend on key environmental factors (e.g. salinity, water temperature, freshwater inputs, turbidity and dissolved oxygen concentration). Knowledge of the larval dynamics in temperate estuaries is scarce for some topics and biased towards some species or geographical areas. The main goal of the present literature review is to synthesise existing knowledge regarding spawning timing and location and larval ecology for fish species occurring in coasts and estuaries, identifying the main patterns, consensus or conflicting hypotheses and highlighting major gaps. Research needs and future perspectives were outlined.  相似文献   

13.
The carrying capacity for the Pacific bluefin tuna at each life stage is estimated and its survival strategy is examined numerically, using a new method to define the hypothetical capacity, the standard population, and the search volumes that are necessary and are feasible for the tuna. The carrying capacity for the adult is estimated at 1–2 × 106 individuals, which corresponds with 5–10% of the hypothetical capacity and is comparable with the maximum levels of the southern and the Atlantic bluefin tuna populations. It is hypothesized semiquantitatively that the migration at each life stage and the remarkable decrement of growth at 120 days and about 40 cm occur as an evolutionary response to population excess over the carrying capacity. It is also hypothesized semiquantitatively that the early larvae have minimal food available in the Subtropical Water and develop the predatory morphology, high growth rate, and high mobility, however, at the expense of a high mortality as an evolutionary response to the tuna spawning in the Subtropical Water. This method may be an available tool to not only investigate the carrying capacity and survival strategy of a specific fish species, but also predict when and in how much abundance the fish species occurs in a specific area of its habitat.  相似文献   

14.
Density‐dependent processes such as growth, survival, reproduction and movement are compensatory if their rates change in response to variation in population density (or numbers) such that they result in a slowed population growth rate at high densities and promote a numerical increase of the population at low densities. Compensatory density dependence is important to fisheries management because it operates to offset the losses of individuals. While the concept of compensation is straightforward, it remains one of the most controversial issues in population dynamics. The difficulties arise when going from general concepts to specific populations. Compensation is usually quantified using some combination of spawner–recruit analysis, long‐term field monitoring or manipulative studies, and computer modelling. Problems arise because there are limitations to each of these approaches, and these limitations generally originate from the high uncertainty associated with field measurements. We offer a hierarchical approach to predicting and understanding compensation that ranges from the very general, using basic life‐history theory, to the highly site‐specific, using detailed population models. We analyse a spawner–recruit database to test the predictions about compensation and compensatory reserve that derive from a three‐endpoint life‐history framework designed for fish. We then summarise field examples of density dependence in specific processes. Selected long‐term field monitoring studies, manipulative studies and computer modelling examples are then highlighted that illustrate how density‐dependent processes led to compensatory responses at the population level. Some theoretical and empirical advances that offer hope for progress in the future on the compensation issue are discussed. We advocate an approach to compensation that involves process‐level understanding of the underlying mechanisms, life‐history theory, careful analysis of field data, and matrix and individual‐based modelling. There will always be debate if the quantification of compensation does not include some degree of understanding of the underlying mechanisms.  相似文献   

15.
The survival of fish eggs and larvae, and therefore recruitment success, can be critically affected by transport in ocean currents. Combining a model of early‐life stage dispersal with statistical stock–recruitment models, we investigated the role of larval transport for recruitment variability across spatial scales for the population complex of North Sea cod (Gadus morhua). By using a coupled physical–biological model, we estimated the egg and larval transport over a 44‐year period. The oceanographic component of the model, capable of capturing the interannual variability of temperature and ocean current patterns, was coupled to the biological component, an individual‐based model (IBM) that simulated the cod eggs and larvae development and mortality. This study proposes a novel method to account for larval transport and success in stock–recruitment models: weighting the spawning stock biomass by retention rate and, in the case of multiple populations, their connectivity. Our method provides an estimate of the stock biomass contributing to recruitment and the effect of larval transport on recruitment variability. Our results indicate an effect, albeit small, in some populations at the local level. Including transport anomaly as an environmental covariate in traditional stock–recruitment models in turn captures recruitment variability at larger scales. Our study aims to quantify the role of larval transport for recruitment across spatial scales, and disentangle the roles of temperature and larval transport on effective connectivity between populations, thus informing about the potential impacts of climate change on the cod population structure in the North Sea.  相似文献   

16.
The Atlantic salmon (Salmo salar) population of the River Minho represents the southern natural distribution edge of the species. In line with the general trend for Atlantic salmon, this population has been declining over the years and is now at a critically low level. With river connectivity compromised by a large dam just 80 km upstream the River Minho's outlet, and an expected deterioration of climatic conditions, it is urgent to increase our knowledge of this population and identify survival bottlenecks that can be addressed. In this study, we used radio and acoustic telemetry to track Atlantic salmon smolts during their migration towards the sea and record both survival rates and possible causes of mortality. The recorded survival for the tagged migrating Atlantic salmon remained below 55% in the three studied years, indicating that the in‐river loss of smolts is likely a strong constraint to this population. From the smolts to which a likely cause of mortality could be attributed (34%), most appear to have been removed from the river (25%), with two confirmed events of bird predation and one of mammal predation. Interestingly, eight tags were recorded moving back upstream, likely indicating predation by larger fish. Increasing predator populations (e.g. cormorants, Phalacrocorax carbo) and invasive predators (e.g. American mink, Neovison vison) lead to elevated predation pressure on this already strained Atlantic salmon population, and further studies quantifying their impact in more detail could prove crucial for future management considerations.  相似文献   

17.
Dredging can have significant impacts on aquatic environments, but the direct effects on fish have not been critically evaluated. Here, a meta‐analysis following a conservative approach is used to understand how dredging‐related stressors, including suspended sediment, contaminated sediment, hydraulic entrainment and underwater noise, directly influence the effect size and the response elicited in fish across all aquatic ecosystems and all life‐history stages. This is followed by an in‐depth review summarizing the effects of each dredging‐related stressor on fish. Across all dredging‐related stressors, studies that reported fish mortality had significantly higher effect sizes than those that describe physiological responses, although indicators of dredge impacts should endeavour to detect effects before excessive mortality occurs. Studies examining the effects of contaminated sediment also had significantly higher effect sizes than studies on clean sediment alone or noise, suggesting additive or synergistic impacts from dredging‐related stressors. The early life stages such as eggs and larvae were most likely to suffer lethal impacts, while behavioural effects were more likely to occur in adult catadromous fishes. Both suspended sediment concentration and duration of exposure greatly influenced the type of fish response observed, with both higher concentrations and longer exposure durations associated with fish mortality. The review highlights the need for in situ studies on the effects of dredging on fish which consider the interactive effects of multiple dredging‐related stressors and their impact on sensitive species of ecological and fisheries value. This information will improve the management of dredging projects and ultimately minimize their impacts on fish.  相似文献   

18.
The ultimate goal of early life studies of fish over the past century has been to better understand recruitment variability. As evident in the Georges Bank haddock (Melanogrammus aeglefinus) population, there is a strong relationship between recruitment success and processes occurring during the planktonic larval stage. This research sought new insights into the mechanisms controlling the recruitment process in fish populations using biological–physical modeling methods together with laboratory and field data sets. We created the first three‐dimensional model of larval haddock on Georges Bank by coupling models of hydrodynamics, lower trophic levels, a single copepod species, and larval haddock. Interactions between feeding, metabolism, growth, vertical behavior, advection, predation, and the physical environment of larval haddock were quantitatively investigated using the coupled models. Particularly, the model was used to compare survival over the larval period and the sources of mortality in 1995 and 1998, 2 years of disparate haddock recruitment. The results of model simulations suggest that the increased egg hatching rates and higher food availability, which reduced starvation and predation, in 1998 contributed to its larger year‐class. Additionally, the inclusion of temperature‐dependent predation rates produced model results that better agreed with observations of the mean hatch date of survivors. The results from this biophysical model imply that food limitation and its related losses to starvation and predation, especially from hatch to 7 mm, may be responsible for interannual variability in recruitment and larval survival outside of the years studied.  相似文献   

19.
Density dependence is likely to act as a regulatory mechanism in fish stocks that are recovering from overfishing. In general, density dependence in fish stocks is assumed to only occur in reproduction and early life stages and is therefore usually modelled as a stock-recruitment relationship. Recent research shows that density dependence can also reduce individual growth in body size later in life. In this study, we show how optimal fishing effort changes with the strength of density dependence in individual growth for four stocks of North Sea flatfish species. Using size-structured population models we show that density dependence arises due to a mechanistic link between the resource availability and life history processes at the individual level. We furthermore show that the stock response to harvesting is either driven by changes in individual reproduction when density dependence in individual growth is weak or by changes in individual growth rate when individual growth is strongly affected by density dependence. These two types or regimes are separated by a sudden shift in dynamics. It is therefore of great importance to account for density dependence in growth when managing fish stocks.  相似文献   

20.
A shift towards oligotrophic conditions in Lake Michigan has led to concern that altered trophic pathways are leading to lower early life survival and recruitment for Lake Whitefish (Coregonus clupeaformis). This study evaluated ontogenetic shifts in age-0 Lake Whitefish diets and evaluated how feeding ecology and the amount of food eaten varied with prey abundance and composition at a site in southeastern Lake Michigan during 2014–2017. Although prey densities varied among years, cyclopoid copepods were overall the most abundant prey available. In turn, cyclopoids were the predominant prey item in diets each year, particularly for the smallest larval Lake Whitefish. However, there was a tendency for the importance of cyclopoids to decline somewhat in each diet index as fish grew and other prey such as calanoid copepods, Bosminidae, Daphniidae and/or chironomids increased in importance. High zooplankton abundance, especially high cyclopoid abundance, available to the small size groups of Lake Whitefish (<21 mm) in 2014 was associated with high food mass/fish, high number of zooplankton eaten/fish, and low incidence of empty stomachs compared with 2015–2017. As fish grew, the impact of food abundance on prey consumption diminished somewhat, indicating that the relationship between fish feeding ecology and the prey environment can change quickly with fish size during the early life period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号