首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 506 毫秒
1.
针对黄花传统人工识别效率低,辨识标准不统一的问题,提出基于轻量化和高效层聚合过渡网络的黄花成熟度识别方法LSEB YOLO v7。首先,引入轻量化卷积对高效层聚合网络和过渡模块进行轻量化处理,减少模型计算量。其次,在特征提取与特征融合网络之间增加通道注意力机制,提升模型检测性能。最后,在特征融合网络中,优化通道信息融合方式,使用双向特征金字塔网络替换Concatenate,增加信息融合通道,持续提升模型性能。实验结果表明:与原始模型相比,在黄花成熟度检测中,改进后的LSEB YOLO v7模型参数量和浮点运算量分别减少约2.0×106和7.7×109。训练时长由8.025 h降低至7.746 h,模型体积压缩约4 MB。同时,训练精确率和召回率分别提升约0.64个百分点和0.14个百分点,mAP@0.5和mAP@0.5:0.95分别提升约1.84个百分点和1.02个百分点。此外,调和均值性能保持不变,均为84.00%。LSEB YOLO v7算法可均衡模型复杂性与性能,为黄花成熟度检测和智能化采摘设备提供技术支持。  相似文献   

2.
为了能准确检测、跟踪加州鲈鱼因水中溶解氧含量低产生的胁迫行为,本文构建了一种改进的YOLO v5与DeepSORT组合网络算法。在算法方面提出2个改进方案:在原YOLO v5的Backbone和Neck中分别加入2个基于移位窗口的自注意力Swin Transformer模块,提升了网络对目标特征信息的提取能力,以此提升原模型的检测效果;采用Warmup和Cosine Annealing结合的学习率策略,使多目标跟踪算法DeepSORT前期收敛速度更快、更稳定。实验结果表明,在目标检测方面,相对于原YOLO v5,改进的YOLO v5的mAP@0.5、mAP@0.5:0.95和召回率分别提升1.9、1.3、0.8个百分点,在不完全遮挡情况下,改进的算法表现出更好的检测效果。在目标跟踪方面,DeepSORT算法的MOTA、MOTP和IDF1分别提升4.0、0.7、10.7个百分点,并且加州鲈鱼在遮挡前后的ID切换频率得到明显抑制。改进的YOLO v5与DeepSORT跟踪算法更适合于检测、跟踪加州鲈鱼的低氧胁迫行为,能够为加州鲈鱼的养殖提供技术支持。  相似文献   

3.
黄瓜霜霉病由古巴假霜霉病菌孢子通过侵染引起,严重影响了黄瓜的品质和产量;病菌孢子数量与病情严重度相关,因此建立快速、简便和高效的病菌孢子定量检测方法,实现黄瓜霜霉病防治关口前移。基于YOLO v5模型提出了一种基于Faster-NAM-YOLO的黄瓜霜霉病菌孢子定量检测模型,该模型首先提出了一种特征提取模块C3_Faster,使用C3_Faster替换YOLO v5中的C3模块,有效降低了模型参数计算量和模型深度,提升了对黄瓜霜霉病菌孢子检测速度和精度;其次在主干网络中加入了NAM注意力模块,通过应用权重稀疏性惩罚抑制不显著权重,进而提高模型的特征提取能力和计算效率;最后实现了对黄瓜霜霉病菌孢子的定量检测。实验结果表明,Faster-NAM-YOLO模型在测试集上mAP@0.5和mAP@0.5:0.95分别达到95.80%和60.90%,对比原始YOLO v5模型分别提升1.80、1.20个百分点,较原始YOLO v5模型内存占用量和每秒浮点运算次数分别减少5.27 MB和1.49×1010;通过与YOLO v3、THP-YOLO v5、YOLO v7、YOLO ...  相似文献   

4.
基于YOLO v5-MDC的重度粘连小麦籽粒检测方法   总被引:1,自引:0,他引:1  
小麦籽粒检测在千粒质量计算及作物育种方面有着重要应用,重度粘连籽粒的有效检测是其关键。本研究设计了一种YOLO v5-MDC的轻量型网络用于重度粘连小麦籽粒检测。该网络在YOLO v5s检测网络的基础上,用混合深度可分离卷积(Mixed depthwise convolutional, MDC)模块进行改进,同时将MDC模块与压缩激励(Squeeze and excitation, SE)模块相结合,以达到在基本不损失模型精度的前提下减少模型参数的目的。YOLO v5-MDC网络将YOLO v5s特征提取网络骨干部分的卷积、归一化、激活函数(Convolution, Batch normal, Hardswish, CBH)模块替换为MDC模块,减少了模型的参数,经过500次迭代训练,模型的精确率P为93.15%,召回率R为99.96%,平均精度均值(mAP)为99.46%。根据模型在测试集上的检测效果,本研究探究了训练次数、不同光源与不同拍摄距离对模型检测结果的影响,统计结果表明,在绿色光源下模型检测精确率最高,为98.00%,在5 cm拍摄高度下图像的检测精确率最高,为98.60%...  相似文献   

5.
肉牛目标检测和数量统计是精细化、自动化、智能化肉牛养殖要解决的关键问题,受肉牛个体颜色及纹理相近和遮挡等因素的影响,现有肉牛目标检测方法实用性较差。本研究基于YOLO v5s网络与通道信息注意力模块(ECABasicBlock),提出了一种融合通道信息的改进YOLO v5s网络(ECA-YOLO v5s),在YOLO v5s模型的骨干特征提取网络部分添加了3层通道信息注意力模块。ECA-YOLO v5s网络实现了重度遮挡环境下多目标肉牛的准确识别。对养殖场监控视频分帧得到的肉牛图像采用了一种基于结构相似性的冗余图像剔除方法以保证数据集质量。数据集制作完成后经过300次迭代训练,得到模型的精确率为89.8%,召回率为76.9%,全类平均精度均值为85.3%,检测速度为76.9 f/s,模型内存占用量为24 MB。与YOLO v5s模型相比,ECA-YOLO v5s的精确率、召回率和平均精度均值分别比YOLO v5s高1.0、0.8、2.2个百分点。为了验证不同注意力机制应用于YOLO v5s的性能差异,本研究对比了CBAM(Convolutional block attention mo...  相似文献   

6.
为在自然环境下自动准确地检测樱桃番茄果实的成熟度,实现樱桃番茄果实自动化采摘,根据成熟期樱桃番茄果实表型特征的变化以及国家标准GH/T 1193—2021制定了5级樱桃番茄果实成熟度级别(绿熟期、转色期、初熟期、中熟期和完熟期),并针对樱桃番茄相邻成熟度特征差异不明显以及果实之间相互遮挡问题,提出一种改进的轻量化YOLO v7模型的樱桃番茄果实成熟度检测方法。该方法将MobileNetV3引入YOLO v7模型中作为骨干特征提取网络,以减少网络的参数量,同时在特征融合网络中加入全局注意力机制(Global attention mechanism, GAM)模块以提高网络的特征表达能力。试验结果表明,改进的YOLO v7模型在测试集下的精确率、召回率和平均精度均值分别为98.6%、98.1%和98.2%,单幅图像平均检测时间为82 ms,模型内存占用量为66.5 MB。对比Faster R-CNN、YOLO v3、YOLO v5s和YOLO v7模型,平均精度均值分别提升18.7、0.2、0.3、0.1个百分点,模型内存占用量也最少。研究表明改进的YOLO v7模型能够为樱桃番茄果实的自...  相似文献   

7.
蛋鸭行为模式是判断笼养鸭养殖过程中健康状况及福利状态的重要指标,为了通过机器视觉实现识别蛋鸭多行为模式,提出了一种基于改进YOLO v4 (You only look once)的目标检测算法,不同的行为模式为蛋鸭的养殖管理方案提供依据。本文算法通过更换主干特征提取网络MobileNetV2,利用深度可分离卷积模块,在提升检测精度的同时降低模型参数量,有效提升检测速度。在预测输出部分引入无参数的注意力机制SimAM模块,进一步提升模型检测精度。通过使用本文算法对笼养蛋鸭行为验证集进行了检测,优化后模型平均精度均值达到96.97%,图像处理帧率为49.28 f/s,相比于原始网络模型,平均精度均值及处理速度分别提升5.03%和88.24%。与常用目标检测网络进行效果对比,改进YOLO v4网络相较于Faster R-CNN、YOLO v5、YOLOX的检测平均精度均值分别提升12.07%、30.6%及2.43%。将本文提出的改进YOLO v4网络进行试验研究,试验结果表明本文算法可以准确地对不同时段的笼养蛋鸭行为进行记录,根据蛋鸭表现出的不同行为模式来帮助识别蛋鸭的异常情况,如部分行为发...  相似文献   

8.
针对高架栽培模式下的大棚草莓,借鉴人体姿态检测算法,建立了改进YOLO v8-Pose模型对红熟期草莓进行识别与果柄关键点检测。通过对比YOLO v5-Pose、YOLO v7-Pose、YOLO v8-Pose模型,确定使用YOLO v8-Pose模型作为对红熟期草莓识别与关键点预测的模型。以YOLO v8-Pose为基础,对其网络结构添加Slim-neck模块与CBAM注意力机制模块,提高模型对小目标物体的特征提取能力,以适应草莓数据集的特点。改进YOLO v8-Pose能够有效检测红熟期草莓并准确标记出果柄关键点,P、R、mAP-kp分别为98.14%、94.54%、97.91%,比YOLO v8-Pose分别提高5.41、5.31、8.29个百分点。模型内存占用量为22 MB,比YOLO v8-Pose的占用量小6 MB。此外,针对果园非结构化的特征,探究了光线、遮挡与拍摄角度对模型预测的影响。对比改进前后的模型在复杂环境下对红熟期草莓的识别与果柄预测情况,改进YOLO v8-Pose在受遮挡、光线和角度影响情况下的mAP-kp分别为94.52%、95.48%、94.63%,较...  相似文献   

9.
鸡群计数是鸡场资产评估中一项非常重要的工作。目前鸡场采用的人工计数方法,存在效率低下且计数准确度不稳定的问题。针对此问题,本文提出了一种基于改进YOLO v5s的蛋鸡个体识别与计数的方法。该方法为了消除真实复杂环境下产蛋箱、食槽等设施对蛋鸡个体识别带来的干扰,在YOLO v5s模型的Neck部分引入了SimAM注意力机制;为了扩大模型感受野,解决蛋鸡个体较小、识别困难的问题,将YOLO v5s模型的SPPF(空间金字塔池化模块)改为了SPPCSPC模块;为了尽可能多地提取蛋鸡有效特征,通过在YOLO v5s的Neck结构添加自适应特征融合模块ASFF,将不同尺度的蛋鸡成像特征信息进行融合的方法,进一步提升了模型的检测精度。在此基础上,通过调用模型检测接口,在接口内部添加计数函数、统计目标数量的方法,实现了蛋鸡个体的计数和鸡舍饲养密度的计算。将改进后的模型通过PyQt工具包进行封装、打包,开发了蛋鸡个体识别与自动计数系统。实验结果表明,改进的YOLO v5s模型的精准率、召回率、平均精度均值分别为89.91%、79.24%、87.53%,较YOLO v5s模型分别提高2.37、2.55、...  相似文献   

10.
为实现葡萄早期病害的快速准确识别,针对葡萄病害的相似表型症状识别率低及小病斑检测困难的问题,以葡萄黑腐病和黑麻疹病为研究对象,提出了一种基于自适应鉴别器增强的样式生成对抗网络与改进的YOLO v7相结合的葡萄黑腐病和黑麻疹病的病斑检测方法。通过自适应鉴别器增强的样式生成对抗网络和拉普拉斯滤波器的方差扩充葡萄病害数据。采用MSRCP算法进行图像增强,改善光照环境凸显病斑特征。以YOLO v7网络框架为基础,将BiFormer注意力机制嵌入特征提取网络,强化目标区域的关键特征;采用BiFPN代替PA-FPN,更好地实现低层细节特征与高层语义信息融合,以同时降低计算复杂度;在YOLO v7的检测头部分嵌入SPD模块,以提高模型对低分辨率图像的检测性能;并采用CIoU与NWD损失函数组合对损失函数重新定义,实现对小目标快速、准确识别。实验结果表明,该方法病斑检测精确率达到94.1%,相比原始算法提升5.7个百分点,与Faster R-CNN、YOLO v3-SPP和YOLO v5x等模型相比分别提高3.3、3.8、4.4个百分点,能够实现葡萄早期病害快速准确识别,对于保障葡萄产业发展具有重要意义。  相似文献   

11.
智能虫情测报灯下害虫的精准识别和分类是实现稻田虫情预警的前提,为解决水稻害虫图像识别过程中存在分布密集、体态微小、易受背景干扰等造成识别精度不高的问题,提出了一种基于MS-YOLO v7(Multi-Scale-YOLO v7)轻量化稻飞虱识别分类方法。首先,采用稻飞虱害虫诱捕装置搭建稻飞虱害虫采集平台,获取的稻飞虱图像构成ImageNet数据集。然后,MS-YOLO v7目标检测算法采用GhostConv轻量卷积作为主干网络,减小模型运行的参数量;在Neck部分加入CBAM注意力机制模块,有效强调稻飞虱区别度较高的特征通道,抑制沉冗无用特征,准确提取稻飞虱图像中的关键特征,动态调整特征图中不同通道的权重;将SPPCSPS空间金字塔池化模块替换SPPFS金字塔池化模块,提高网络模型对各分类样本的特征提取能力;同时将YOLO v7模型中的SiLU激活函数替换为Mish激活函数,增强网络的非线性表达能力。试验结果表明,改进后的MS-YOLO v7在测试集上的模型平均精度均值(Mean average precision,mAP)为95.7%,精确率(Precision)为96.4%,召回率(Recall)为94.2%,与Faster R-CNN、SSD、YOLO v5、YOLO v7网络模型相比mAP分别提高2.1、3.4、2.3、1.6个百分点,F1值分别提高2.7、4.1、2.5、1.4个百分点。改进后的模型内存占用量、参数量、浮点运算数分别为63.7MB、2.85×107、7.84×1010,相比YOLO v7模型分别缩减12.5%、21.7%、25.4%,MS-YOLO v7网络模型对稻飞虱种间害虫均能实现高精度的识别与分类,具有较好的鲁棒性,可为稻田早期稻飞虱虫情预警提供技术支持。  相似文献   

12.
奶牛体况评分是评价奶牛产能与体态健康的重要指标。目前,随着现代化牧场的发展,智能检测技术已被应用于奶牛精准养殖中。针对目前检测算法的参数量多、计算量大等问题,以YOLO v5s为基础,提出了一种改进的轻量级奶牛体况评分模型(YOLO-MCE)。首先,通过2D摄像机在奶牛挤奶通道处采集奶牛尾部图像并构建奶牛BCS数据集。其次,在MobileNetV3网络中融入坐标注意力机制(Coordinate attention, CA)构建M3CA网络。将YOLO v5s的主干网络替换为M3CA网络,在降低模型复杂度的同时,使得网络特征提取时更关注于牛尾区域的位置和空间信息,从而提高了运动模糊场景下的检测精度。YOLO v5s预测层采用EIoU Loss损失函数,优化了目标边界框回归收敛速度,生成定位精准的预测边界框,进而提高了模型检测精度。试验结果表明,改进的YOLO v5s模型的检测精度为93.4%,召回率为85.5%,mAP@0.5为91.4%,计算量为2.0×109,模型内存占用量仅为2.28 MB。相较原始YOLO v5s模型,其计算量降低87.3%,模型内存占用量减...  相似文献   

13.
肉牛活动过程中所表现出的行为是肉牛健康状况的综合体现,实现肉牛行为的快速准确识别,对肉牛疾病防控、自身发育评估和发情监测等具有重要作用。基于机器视觉的行为识别技术因其无损、快速的特点,已应用在畜禽养殖行为识别中,但现有的基于机器视觉的肉牛行为识别方法通常针对单只牛或单独某个行为开展研究,且存在计算量大等问题。针对上述问题,本文提出了一种基于SNSS-YOLO v7(Slim-Neck&Separated and enhancement attention module&Simplified spatial pyramid pooling-fast-YOLO v7)的肉牛行为识别方法。首先在复杂环境下采集肉牛的爬跨、躺卧、探究、站立、运动、舔砥和互斗7种常见行为图像,构建肉牛行为数据集;其次在YOLO v7颈部采用Slim-Neck结构,以减小模型计算量与参数量;然后在头部引入分离和增强注意力模块(Separated and enhancement attention module, SEAM)增强Neck层输出后的检测效果;最后使用SimSPPF(Simplified ...  相似文献   

14.
针对自然环境下棉花叶片病害检测难度大和人工设计特征提取器难以获取与棉叶病虫害相近特征表达的问题,提出一种改进的注意力机制YOLO v7算法(CBAM-YOLO v7)。该模型在YOLO v7模型基础上,在Backbone与Head中间增加注意力机制CBAM,并在Head部进行4倍下采样,然后将CBAM-YOLO v7模型用于棉叶病虫害识别,并与YOLO v5和YOLO v7进行对比试验。试验结果表明:蚜虫和正常叶片检测方面,YOLO v7可取得好的检测结果;CBAM-YOLO v7对黄萎病、棉盲蝽、红蜘蛛棉叶病虫害图像检测的准确率高于其他模型。CBAM-YOLO v7的mAP为85.5%,相较于YOLO v5提高21个百分点,相较于YOLO v7提高4.9个百分点;单幅图检测耗时为29.26ms,可为棉叶病害在线监测提供理论基础。  相似文献   

15.
为了实现复杂环境下农业机器人对番茄果实的快速准确识别,提出了一种基于注意力机制与改进YOLO v5s的温室番茄目标快速检测方法。根据YOLO v5s模型小、速度快等特点,在骨干网络中加入卷积注意力模块(CBAM),通过串联空间注意力模块和通道注意力模块,对绿色番茄目标特征给予更多的关注,提高识别精度,解决绿色番茄在相似颜色背景中难识别问题;通过将CIoU Loss替换GIoU Loss作为算法的损失函数,在提高边界框回归速率的同时提高果实目标定位精度。试验结果表明,CB-YOLO网络模型对温室环境下红色番茄检测精度、绿色番茄检测精度、平均精度均值分别为99.88%、99.18%和99.53%,果实检测精度和平均精度均值高于Faster R-CNN模型、YOLO v4-tiny模型和YOLO v5模型。将CB-YOLO模型部署到安卓手机端,通过不同型号手机测试,验证了模型在移动终端设备上运行的稳定性,可为设施环境下基于移动边缘计算的机器人目标识别及采收作业提供技术支持。  相似文献   

16.
针对现有花椒簇检测算法模型参数量多、计算量大、检测速度低、很难部署到嵌入式设备的问题,提出一种基于轻量化YOLOv5s的花椒簇检测算法模型。首先将ShuffleNet v2主干网络替代原YOLOv5s中的主干网络进行重构;同时将SPPF嵌入至ShuffleNet v2骨干中;其次引入轻量级注意力机制CBAM;最后使用SIoU_Loss代替CIoU_Loss作为回归损失函数。试验结果表明:改进后的轻量化YOLOv5s网络参数降低85.6%,计算量降低87.7%,对花椒簇的检测精度mAP@0.5达到92.6%,较原YOLOv5s模型提高3.4%,mAP@0.5:0.95达到61.4%,检测时间为11 ms,相比原模型16 ms缩短31.3%,可以满足在现场环境下对花椒簇的检测。  相似文献   

17.
为实现作物病害早期识别,本文提出一种基于红外热成像和改进YOLO v5的作物病害早期检测模型,以CSPD-arknet为主干特征提取网络,YOLO v5 stride-2卷积替换为SPD-Conv模块,分别为主干网络中的5个stride-2卷积层和Neck中的2个stride-2卷积层,可以提高其准确性,同时保持相同级别的参数大小,并向下阶段输出3个不同尺度的特征层;为增强建模通道之间的相互依赖性,自适应地重新校准通道特征响应,引入SE机制提升特征提取能力;为减少模型计算量,提高模型速度,引入SPPF。经测试,改进后YOLO v5网络检测性能最佳,mAP为95.7%,相比YOLO v3、YOLO v4、SSD和YOLO v5网络分别提高4.7、8.8、19.0、3.5个百分点。改进后模型相比改进前对不同温度梯度下的作物病害检测也有提高,5个梯度mAP分别为91.0%、91.6%、90.4%、92.6%和94.0%,分别高于改进前3.6、1.5、7.2、0.6、0.9个百分点。改进YOLO v5网络内存占用量为13.755MB,低于改进前基础模型3.687MB。结果表明,改进YOLO v5可以准确快速地实现病害早期检测。  相似文献   

18.
甜椒在生长发育过程中容易产生畸形果,机器代替人工对甜椒畸形果识别和摘除一方面可提高甜椒品质和产量,另一方面可解决当前人工成本过高、效率低下等问题。为实现机器人对甜椒果实的识别,提出了一种基于改进YOLO v7-tiny目标检测模型,用于区分正常生长和畸形生长的甜椒果实。将无参数注意力机制(Parameter free attention module, SimAM)融合到骨干特征提取网络中,增强模型的特征提取和特征整合能力;用Focal-EIOU(Focal and efficient intersection over union)损失替换原损失函数CIOU(Complete intersection over union),加快模型收敛并降低损失值;使用SiLU激活函数代替原网络中的Leaky ReLU,增强模型的非线性特征提取能力。试验结果表明,改进后的模型整体识别精确度、召回率、平均精度均值(Mean average precision, mAP)mAP0.5、mAP0.5-0.95分别为99.1%、97.8%、98.9%、94.5%,与改进前相比,分别提升5.4、4.7、2.4、10.7个百分点,模型内存占用量为 10.6MB,单幅图像检测时间为4.2ms。与YOLO v7、Scaled-YOLO v4、YOLOR-CSP等目标检测模型相比,模型在F1值上与YOLO v7相同,相比Scaled-YOLO v4、YOLOR-CSP分别提升0.7、0.2个百分点,在mAP0.5-0.95上分别提升0.6、1.2、0.2个百分点,而内存占用量仅为上述模型的14.2%、10.0%、10.0%。本文所提出的模型实现了小体量而高精度,便于在移动端进行部署,为后续机械化采摘和品质分级提供技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号