首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 703 毫秒
1.
基于机器视觉的水下河蟹识别方法   总被引:7,自引:0,他引:7  
为了探测河蟹在池塘中的数量及分布情况,为自动投饵船提供可靠的数据反馈,提出了基于机器视觉的水下河蟹识别方法。该方法通过在投饵船下方安装摄像头进行河蟹图像实时采集,针对水下光线衰减大、视野模糊等特点,采用优化的Retinex算法提高图像对比度,增强图像细节,修改基于深度卷积神经网络YOLO V3的输入输出,并采用自建的数据集对其进行训练,实现了对水下河蟹的高精度识别。实验所训练的YOLO V3模型在测试集上的平均精度均值达86. 42%,对水下河蟹识别的准确率为96. 65%,召回率为91. 30%。实验对比了多种目标检测算法,仅有YOLO V3在识别准确率和识别速率上均达到较高水平。在同一硬件平台上YOLO V3的识别速率为10. 67 f/s,优于其他算法,具有较高的实时性和应用价值。  相似文献   

2.
基于卷积神经网络的草莓识别方法   总被引:6,自引:0,他引:6  
针对目前草莓识别定位大多在简单环境下进行、识别效率较低的问题,提出利用改进的YOLOv3识别方法在复杂环境中对草莓进行连续识别检测。通过训练大量的草莓图像数据集,得到最优权值模型,其测试集的精度均值(MAP)达到87. 51%;成熟草莓的识别准确率为97. 14%,召回率为94. 46%;未成熟草莓的识别准确率为96. 51%,召回率为93. 61%。在模型测试阶段,针对夜晚环境下草莓图像模糊的问题,采用伽马变换得到的增强图像较原图识别正确率有显著提升。以调和平均值(F)作为综合评价指标,对比多种识别方法在不同果实数量、不同时间段及视频测试下的实际检测结果,结果表明,YOLOv3算法F值最高,每帧图像的平均检测时间为34. 99 ms,视频的平均检测速率为58. 1 f/s,模型的识别正确率及速率均优于其他算法,满足实时性要求。同时,该方法在果实遮挡、重叠、密集等复杂环境下具有良好的鲁棒性。  相似文献   

3.
为实现对不同品种核桃的分类与定位,提出一种基于深度学习的核桃检测方法。首先,以新疆南疆地区主产的三种核桃为对象进行图像采集,并对图像进行翻转、裁剪、去噪、光照变换等操作制作核桃数据集;然后,采用基于YOLOv5的检测模型进行试验,并与YOLOv3、YOLOv4和Faster RCNN算法进行比较。结果表明,基于YOLOv5的模型对新2、新光和温185核桃检测的平均精度均值分别为99.5%、98.4%和97.1%,单幅图像检测耗时为7 ms。在相同数据集、相同试验环境下,该模型的检测速度是Faster RCNN的7倍,该模型的检测精度比YOLOv4高2.8%且模型大小仅为YOLOv4的1/14。试验结果表明,基于YOLOv5的核桃检测方法在检测精度和速度上是所有对比算法中最高的,适合本研究的检测需求,可为机器人自主分拣核桃提供研究基础。  相似文献   

4.
苹果树疏花是果园生产管理中的重要环节。准确高效地识别苹果中心花和边花,是研发智能疏花机器人的前提。针对苹果疏花作业中的实际需求,提出了一种基于CRV-YOLO的苹果中心花和边花识别方法。本文基于YOLO v5s模型进行了如下改进:将C-CoTCSP结构融入Backbone,更好地学习上下文信息并提高了模型特征提取能力,提高了模型对外形相似和位置关系不明显的中心花和边花的检测性能。在Backbone中添加改进RFB结构,扩大特征提取感受野并对分支贡献度进行加权,更好地利用了不同尺度特征。采用VariFocal Loss损失函数,提高了模型对遮挡等场景下难识别样本检测能力。在3个品种1 837幅图像数据集上进行了实验,结果表明,CRV-YOLO的精确率、召回率和平均精度均值分别为95.6%、92.9%和96.9%,与原模型相比,分别提高3.7、4.3、3.9个百分点,模型受光照变化和苹果品种影响较小。与Faster R-CNN、SSD、YOLOX、YOLO v7模型相比,CRV-YOLO的精确率、平均精度均值、模型内存占用量和复杂度性能最优,召回率接近最优。研究成果可为苹果智能疏花提供技术...  相似文献   

5.
基于卷积神经网络的大白母猪发情行为识别方法研究   总被引:2,自引:0,他引:2  
针对现有发情检测方法灵敏度低、识别时间长、易受外界干扰等缺点,根据大白母猪试情时双耳竖立的特征,提出一种基于卷积神经网络(Convolutional neural network, CNN)的大白母猪发情行为识别方法。首先通过采集公猪试情时发情大白母猪与未发情大白母猪的耳部图像,划分训练集样本(80%)与验证集样本(20%)用于后期训练。随后,基于AlexNet卷积神经网络构建分类模型(AlexNet_Sow),并对该模型的网络结构进行简化,简化后的模型包含2个卷积模块和2个全连接模块,选择修正线性单元(Rectified linear units, ReLU)作为激活函数,用自适应矩估计(Adaptive moment estimation, Adam)方法优化梯度下降,选择Softmax作为网络分类器,通过结合增强学习的方法对模型进行训练,得到模型应用于验证集的准确率达到99%。此外,设定了发情鉴定的时间阈值,并结合LabVIEW的Python节点用于模型应用。当公猪试情时,大白母猪双耳竖立时长达到76s时,则可判定其为发情。该方法对大白母猪发情识别的精确率、召回率与准确率分别为100%、83.33%、93.33%,平均单幅图像的检测时间为26.28ms。该方法能够实现大白母猪发情的无接触自动快速检测,准确率高,大大降低了猪只应激情况和人工成本。  相似文献   

6.
为解决植保无人机在间作类农田进行农药喷洒作业时对非喷雾对象的误喷问题,提出一种基于Faster RCNN目标检测的无人机喷雾方法,包括图像预处理、模型训练与测试、喷雾规则的制定。对模型识别效果与喷雾规则可行性进行试验,结果表明,该识别模型对喷雾对象的识别准确率达96.66%,对喷雾对象位置定位的准确率达91.33%,该喷雾规则具有较高的可行性。研究结果为间作类农田的无人机智能化喷雾提供参考。  相似文献   

7.
基于改进YOLO v3模型的挤奶奶牛个体识别方法   总被引:3,自引:0,他引:3  
为实现无接触、高精度养殖场环境下奶牛个体的有效识别,提出了基于改进YOLO v3深度卷积神经网络的挤奶奶牛个体识别方法。首先,在奶牛进、出挤奶间的通道上方安装摄像机,定时、自动获取奶牛背部视频,并用视频帧分解技术得到牛背部图像;用双边滤波法去除图像噪声,并用像素线性变换法增强图像亮度和对比度,通过人工标注标记奶牛个体编号;为适应复杂环境下的奶牛识别,借鉴Gaussian YOLO v3算法构建了优化锚点框和改进网络结构的YOLO v3识别模型。从89头奶牛的36790幅背部图像中,随机选取22074幅为训练集,其余图像为验证集和测试集。识别结果表明,改进YOLO v3模型的识别准确率为95.91%,召回率为95.32%,mAP为95.16%, IoU为85.28%,平均帧率为32f/s,识别准确率比YOLO v3高0.94个百分点,比Faster R-CNN高1.90个百分点,检测速度是Faster R-CNN的8倍,背部为纯黑色奶牛的F1值比YOLO v3提高了2.75个百分点。本文方法具有成本低、性能优良的特点,可用于养殖场复杂环境下挤奶奶牛个体的实时识别。  相似文献   

8.
基于深度学习的诱捕器内红脂大小蠹检测模型   总被引:2,自引:0,他引:2  
红脂大小蠹是危害我国北方地区松杉类针叶树种的重大林业入侵害虫,其虫情监测是森林虫害防治的重要环节。传统的人工计数方法已经无法满足现代化红脂大小蠹监测的需求。为自动化识别并统计信息素诱捕器捕获的红脂大小蠹,在传统信息素诱捕器中集成摄像头,自动采集收集杯内图像,建立蠹虫数据集。使用K-means聚类算法优化Faster R-CNN深度学习目标检测模型的默认框,并使用GPU服务器端到端地训练该模型,实现了诱捕器内任意姿态红脂大小蠹的目标检测。采用面向个体的定量评价和面向诱捕器的定性评价两种评价方式。实验结果表明:较原始Faster R-CNN模型,该模型在困难测试集上面向个体和诱捕器的精确率-召回率曲线下面积(Area under the curve,AUC)提升了4.33%和3.28%。在整体测试集上个体和诱捕器AUC分别达0.9350、0.9722。该模型的检测速率为1.6s/幅,准确度优于SSD、Faster R-CNN等目标检测模型,对姿态变化、杂物干扰、酒精蒸发等有较好的鲁棒性。改进后的模型可从被诱芯吸引的6种小蠹科昆虫中区分出危害最大的红脂大小蠹,自动化地统计诱捕器内红脂大小蠹数量。  相似文献   

9.
为实现苹果果径与果形快速准确自动化分级,提出了基于改进型SSD卷积神经网络的苹果定位与分级算法。深度图像与两通道图像融合提高苹果分级效率,即对从顶部获取的苹果RGB图像进行通道分离,并提取分离通道中影响苹果识别精度最大的两个通道与基于ZED双目立体相机从苹果顶部获取的苹果部分深度图像进行融合,在融合图像中计算苹果的纵径相关信息,实现了基于顶部融合图像的多个苹果果形分级和信息输出;使用深度可分离卷积模块替换原SSD网络主干特征提取网络中部分标准卷积,实现了网络的轻量化。经过训练的算法在验证集下的识别召回率、精确率、mAP和F1值分别为93.68%、94.89%、98.37%和94.25%。通过对比分析了4种输入层识别精确率的差异,实验结果表明输入层的图像通道组合为DGB时对苹果的识别与分级mAP最高。在使用相同输入层的情况下,比较原SSD、Faster R-CNN与YOLO v5算法在不同果实数目下对苹果的实际识别定位与分级效果,并以mAP为评估值,实验结果表明改进型SSD在密集苹果的mAP与原SSD相当,比Faster R-CNN高1.33个百分点,比YOLO v5高14.23个百分点...  相似文献   

10.
监测与识别林下落果的数量和分布信息,是实现落果自动收获和果园智能化管理的重要基础。针对目前落果识别智能化程度较低等问题,提出一种基于深度学习的林下落果识别方法。首先,以不同类型、品种落果图像为基础,通过数据预处理、增强等方法建立林下落果图像数据集。其次,利用YOLO-v3深度卷积神经网络优势特性,建立落果智能识别方法。最后,以柑橘、梨、苹果三种典型落果,对基于深度学习的林下落果识别方法进行测试与验证,分析相关试验结果。试验结果表明:所提出的基于YOLO-v3落果识别方法,在不同条件均能准确识别落果,三种典型落果识别精度大于89%;相对于SSD,RCNN和CenterNet三种网络模型,YOLO-v3的准确率分别提高7%,2%和3.5%;在腐烂落果识别层面,YOLO-v3、SSD、RCNN和CenterNet的识别准确率分别为86%,59%,64%和43%;YOLO-v3的识别准确率高于其他深度学习模型。所提出的方法可以精确的识别林下落果,为后期的落果精准管理提供必要的技术支撑。  相似文献   

11.
基于优化Faster R-CNN的棉花苗期杂草识别与定位   总被引:2,自引:0,他引:2  
为解决棉花苗期杂草种类多、分布状态复杂,且与棉花幼苗伴生的杂草识别率低、鲁棒性差等问题,以自然条件下新疆棉田棉花幼苗期的7种常见杂草为研究对象,提出了一种基于优化Faster R-CNN和数据增强的杂草识别与定位方法。采集不同生长背景和天气条件下的杂草图像4694幅,对目标进行标注后,再对其进行数据增强;针对Faster R-CNN模型设计合适的锚尺度,对比VGG16、VGG19、ResNet50和ResNet101这4种特征提取网络的分类效果,选定VGG16作为最优特征提取网络,训练后得到可识别不同天气条件下的棉花幼苗与多种杂草的Faster R-CNN网络模型。试验表明,该模型可对杂草与棉花幼苗伴生、杂草分布稀疏或分布紧密且目标多等情况下的杂草进行有效识别与定位,优化后的模型对单幅图像平均识别时间为0.261s,平均识别精确率为94.21%。在相同训练样本、特征提取网络以及环境设置条件下,将本文方法与主流目标检测算法——YOLO算法和SSD算法进行对比,优化后的Faster R-CNN模型具有明显优势。将训练好的模型置于田间实际环境进行验证试验,识别过程对采集到的150幅有效图像进行了验证,平均识别精确率为88.67%,平均每幅图像耗时0.385s,说明本文方法具有一定的适用性和可推广性。  相似文献   

12.
为实现田间环境下对玉米苗和杂草的高精度实时检测,本文提出一种融合带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration, MSRCR)增强算法的改进YOLOv4-tiny模型。首先,针对田间环境的图像特点采用MSRCR算法进行图像特征增强预处理,提高图像的对比度和细节质量;然后使用Mosaic在线数据增强方式,丰富目标检测背景,提高训练效率和小目标的检测精度;最后对YOLOv4-tiny模型使用K-means++聚类算法进行先验框聚类分析和通道剪枝处理。改进和简化后的模型总参数量降低了45.3%,模型占用内存减少了45.8%,平均精度均值(Mean average precision, mAP)提高了2.5个百分点,在Jetson Nano嵌入式平台上平均检测帧耗时减少了22.4%。本文提出的Prune-YOLOv4-tiny模型与Faster RCNN、YOLOv3-tiny、YOLOv4 3种常用的目标检测模型进行比较,结果表明:Prune-YOLOv4-tiny的mAP为96.6%,分别比Faster RCNN和YOLOv3...  相似文献   

13.
海参目标检测是实现海参自动化捕捞的前提。为了解决复杂海底环境下背景和目标颜色相近以及遮挡导致的目标漏检问题,本文在Faster R-CNN框架下,提出了Swin-RCNN目标检测算法。该算法的骨干网络采用Swin Transformer,同时在结构上融入了多尺度特征提取层和实例分割功能,提高了算法的自适应特征融合能力,从而提高了模型在复杂环境下对不同尺寸海参的识别能力。实验结果表明:本文方法对海参检测的平均精度均值(mAP)达到94.47%,与Faster R-CNN、SSD、YOLO v5、YOLO v4、YOLO v3相比分别提高4.49、4.56、4.46、11.78、22.07个百分点。  相似文献   

14.
作物病害的初期快速准确识别是减小作物经济损失的重要保障。针对实际生产环境中,作物叶片黄化曲叶病毒病(Yellow leaf curl virus,YLCV)患病初期无法应用传统图像处理算法通过颜色或纹理特征进行准确和快速识别,并且YOLO v5s通用模型在复杂环境下识别效果差和效率低的问题,本文提出一种集成改进的叶片病害检测识别方法。该方法通过对Plant Village公开数据集中单一患病叶片图像以及实际生产中手机拍摄获取的患病作物冠层图像两种来源制作数据集,并对图像中的患病叶片进行手动标注等操作,以实现在复杂地物背景和叶片遮挡等情况下正确识别目标,即在健康叶片、患病叶片、枯萎叶片、杂草和土壤中准确识别出所有的患病叶片。此外,用智能手机在生产现场拍摄图像,会存在手机分辨率、光线、拍摄角度等多种因素,会导致识别正确率降低等问题,需要对采集到的图像进行预处理和数据增强以提高模型识别率,通过对YOLO v5s原始模型骨干网络重复多次增加CA注意力机制模块(Coordinate attention),增强YOLO算法对关键信息的提取能力,利用加权双向特征金字塔网络(Bidirectional feature pyramid network,BiFPN),增强模型不同特征层的融合能力,从而提高模型的泛化能力,替换损失函数EIoU(Efficient IoU loss),进一步优化算法模型,实现多方法叠加优化后系统对目标识别性能的综合提升。在相同试验条件下,对比YOLO v5原模型、YOLO v8、Faster R-CNN、SSD等模型,本方法的精确率P、召回率R、平均识别准确率mAP0.5、mAP0.5:0.95分别达到97.40%、94.20%、97.20%、79.10%,本文所提出的算法在提高了精确率与平均精度的同时,保持了较高的运算速度,满足对作物黄化曲叶病毒病检测的准确性与时效性的要求,并为移动端智能识别作物叶片病害提供了理论基础。  相似文献   

15.
发芽与表面损伤检测是鲜食马铃薯商品化的重要环节。针对鲜食马铃薯高通量分级分选过程中,高像素图像目标识别准确率低的问题,提出一种基于改进Faster R-CNN的商品马铃薯发芽与表面损伤检测方法。以Faster R-CNN为基础网络,将Faster R-CNN中的特征提取网络替换为残差网络ResNet50,设计了一种融合ResNet50的特征图金字塔网络(FPN),增加神经网络深度。采用模型对比试验、消融试验对本文模型与改进策略的有效性进行了试验验证分析,结果表明:改进模型的马铃薯检测平均精确率为98.89%,马铃薯发芽检测平均精确率为97.52%,马铃薯表面损伤检测平均精确率为92.94%,与Faster R-CNN模型相比,改进模型在检测识别时间和内存占用量不增加的前提下,马铃薯检测精确率下降0.04个百分点,马铃薯发芽检测平均精确率提升7.79个百分点,马铃薯表面损伤检测平均精确率提升34.54个百分点。改进后的模型可以实现对在高分辨率工业相机采集高像素图像条件下,商品马铃薯发芽与表面损伤的准确识别,为商品马铃薯快速分级分等工业化生产提供了方法支撑。  相似文献   

16.
为准确高效地实现无接触式奶山羊个体识别,以圈养环境下奶山羊面部图像为研究对象,提出一种基于改进YOLO v5s的奶山羊个体识别方法。首先,从网络上随机采集350幅羊脸图像构成羊脸面部检测数据集,使用迁移学习思想预训练YOLO v5s模型,使其能够检测羊脸位置。其次,构建包含31头奶山羊3 844幅不同生长期的面部图像数据集,基于预训练的YOLO v5s,在特征提取层中引入SimAM注意力模块,增强模型的学习能力,并在特征融合层引入CARAFE上采样模块以更好地恢复面部细节,提升模型对奶山羊个体面部的识别精度。实验结果表明,改进YOLO v5s模型平均精度均值为97.41%,比Faster R-CNN、SSD、YOLO v4模型分别提高6.33、8.22、15.95个百分点,比YOLO v5s模型高2.21个百分点,改进模型检测速度为56.00 f/s,模型内存占用量为14.45 MB。本文方法能够准确识别具有相似面部特征的奶山羊个体,为智慧养殖中的家畜个体识别提供了一种方法支持。  相似文献   

17.
为实现收获后含杂马铃薯中土块石块的快速检测和剔除,提出了一种基于改进YOLO v4模型的马铃薯中土块石块检测方法。YOLO v4模型以CSPDarknet53为主干特征提取网络,在保证检测准确率的前提下,利用通道剪枝算法对模型进行剪枝处理,以简化模型结构、降低运算量。采用Mosaic数据增强方法扩充图像数据集(8621幅图像),对模型进行微调,实现了马铃薯中土块石块的检测。测试表明,剪枝后模型总参数量减少了94.37%,模型存储空间下降了187.35 MB,前向运算时间缩短了0.02 s,平均精度均值(Mean average precision, mAP)下降了2.1个百分点,说明剪枝处理可提升模型性能。为验证模型的有效性,将本文模型与5种深度学习算法进行比较,结果表明,本文算法mAP为96.42%,比Faster R-CNN、Tiny-YOLO v2、YOLO v3、SSD分别提高了11.2、11.5、5.65、10.78个百分点,比YOLO v4算法降低了0.04个百分点,模型存储空间为20.75 MB,检测速度为78.49 f/s,满足实际生产需要。  相似文献   

18.
基于YOLO v7-ECA模型的苹果幼果检测   总被引:1,自引:0,他引:1  
为实现自然环境下苹果幼果的快速准确检测,针对幼果期苹果果色与叶片颜色高度相似、体积微小、分布密集,识别难度大的问题,提出了一种融合高效通道注意力(Efficient channel attention, ECA)机制的改进YOLO v7模型(YOLO v7-ECA)。在模型的3条重参数化路径中插入ECA机制,可在不降低通道维数的前提下实现相邻通道局部跨通道交互,有效强调苹果幼果重要信息、抑制冗余无用特征,提高模型效率。采集自然环境下苹果幼果图像2 557幅作为训练样本、547幅作为验证样本、550幅作为测试样本,输入模型进行训练测试。结果表明,YOLO v7-ECA网络模型准确率为97.2%、召回率为93.6%、平均精度均值(Mean average precision, mAP)为98.2%、F1值为95.37%。与Faster R-CNN、SSD、Scaled-YOLO v4、YOLO v5、YOLO v6、YOLO v7网络模型相比,其mAP分别提高15.5、4.6、1.6、1.8、3.0、1.8个百分点,准确率分别提高49.7、0.9、18.5、1.2、0.9、1.0个百分点,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号