首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A trial in an 11-year-old stand of radiata pine (Pinus radiata D. Don) was used to analyse the effects of accelerated loss of nutrients from the site on forest productivity and nutrient status. Raking of litter was undertaken over 14 years prior to thinning, then for 2 years after thinning at which time the trial was destroyed in a wind storm. The experimental design was a factorial of three main treatments: (i) removal (raking) versus nil removal of the forest floor, (ii) replacement or non replacement of nutrients to adjust for imbalances between nutrients in litter and those in the tree stem, and (iii) complete replacement (or not) of all nutrients removed in the litter. Additionally, a small trial was incorporated to address components of physical aspects of litter removal by comparing raking with ‘raking and a cover of woven plastic mesh’. Raking and nutrient additions were carried out approximately every 6 months.Over the study period, the raking treatment removed about 75 Mg ha−1 of organic material with contained nutrients (559 kg ha−1 of N, 68 kg ha−1 of P, 323 kg ha−1 of Ca, 91 kg ha−1 of Mg, 243 kg ha−1 of K, 0.9 kg ha−1 of B) and this related to about four normal sawlog harvests or one total tree harvest. Up to the time of thinning, raking reduced basal area increment by 25% while raking together with replacement of nutrients reduced this by about 12%. Nutrient additions to unraked plots led to increases of up to 14% in basal area increment. The raking treatment reduced foliage nitrogen and this was correlated with reduced growth while other nutrients such as boron and sulphur were reduced but not to a degree to affect growth or health. The results were used to assess the effects on soil nutrient status and growth of different harvesting regimes (wood only, wood plus bark, total tree).  相似文献   

2.
We measured the change in above- and below-ground carbon and nutrient pools 11 years after the harvesting and site preparation of a histic-mineral soil wetland forest in the Upper Peninsula of Michigan. The original stand of black spruce (Picea mariana), jack pine (Pinus banksiana) and tamarack (Larix laricina) was whole-tree harvested, and three post-harvest treatments (disk trenching, bedding, and none) were randomly assigned to three Latin square blocks (n = 9). Nine control plots were also established in an adjoining uncut stand. Carbon and nutrients were measured in three strata of above-ground vegetation, woody debris, roots, forest floor, and mineral soil to a depth of 1.5 m. Eleven years following harvesting, soil C, N, Ca, Mg, and K pools were similar among the three site preparation treatments and the uncut stand. However, there were differences in ecosystem-level nutrient pools because of differences in live biomass. Coarse roots comprised approximately 30% of the tree biomass C in the regenerated stands and 18% in the uncut stand. Nutrient sequestration, in the vegetation since harvesting yielded an average net ecosystem gain of 332 kg N ha−1, 110 kg Ca ha−1, 18 kg Mg ha−1, and 65 kg K ha−1. The likely source for the cations and N is uptake from shallow groundwater, but N additions could also come from non-symbiotic N-fixation and N deposition. These are the only reported findings on long-term effects of harvesting and site preparation on a histic-mineral soil wetland and the results illustrate the importance of understanding the ecohydrology and nutrient dynamics of the wetland forest. This wetland type appears less sensitive to disturbance than upland sites, and is capable of sustained productivity under these silvicultural treatments.  相似文献   

3.
The growth, aboveground biomass production and nutrient accumulation in black alder (Alnus glutinosa (L.) Gaertn.), silver birch (Betula pendula Roth.) and Scots pine (Pinus sylvestris L.) plantations during 7 years after planting were investigated on reclaimed oil shale mining areas in Northeast Estonia with the aim to assess the suitability of the studied species for the reclamation of post-mining areas. The present study revealed changes in soil properties with increasing stand age. Soil pH and P concentration decreased and soil N concentration increased with stand age. The largest height and diameter of trees, aboveground biomass and current annual production occurred in the black alder stands. In the 7-year-old stands the aboveground biomass of black alder (2100 trees ha−1) was 2563 kg ha−1, in silver birch (1017 trees ha−1) and Scots pine (3042 trees ha−1) stands respective figures were 161 and 1899 kg ha−1. The largest amounts of N, P, K accumulated in the aboveground part were in black alder stands. In the 7th year, the amount of N accumulated in the aboveground biomass of black alder stand was 36.1 kg ha−1, the amounts of P and K were 3.0 and 8.8 kg ha−1, respectively. The larger amounts of nutrients in black alder plantations are related to the larger biomass of stands. The studied species used N and P with different efficiency for the production of a unit of biomass. Black alder and silver birch needed more N and P for biomass production, and Scots pine used nutrients most efficiently. The present study showed that during 7 years after planting, the survival and productivity of black alder were high. Therefore black alder is a promising tree species for the reclamation of oil shale post-mining areas.  相似文献   

4.
Scarcity of simple and reliable methods of estimating soil organic carbon (SOC) turnover and lack of data from long-term experiments make it difficult to estimate attainable soil C sequestration in tropical improved fallows. Testing and validating existing and widely used SOC models would help to determine attainable C storage in fallows. The Rothamsted C (RothC) model, therefore, was tested using empirical data from improved fallows at Msekera in eastern Zambia. This study (i) determined the effects of nitrogen fixing tree (NFT) species on aboveground organic C inputs to the soil and SOC stocks, (ii) estimated annual net organic C inputs to the soil using the RothC, and (iii) tested the performance of RothC model using empirical data from improved fallows. Soil samples (0–20 cm) were collected from coppicing and non-coppicing fallow experiments in October 2002 for determination of SOC by LECO CHN-1000 analyser. Data on surface litter, maize and weed biomasses, and on weather, were supplied by the Zambia/ICRAF Agroforestry Project. Measured SOC stocks to 20 cm depth ranged from 32.2 to 37.8 t ha−1 in coppicing fallows and 29.5 to 30.1 t ha−1 in non-coppicing fallows compared to 22.2–26.2 t ha−1 in maize monoculture systems. Coppicing fallows accumulated more SOC (680–1150 g m−2 year−1) than non-coppicing fallows (410–789 g m−2 year−1). While treatments with NFTs accumulated more SOC than NFT-free systems, SOC stocks increased with increasing tree biomass production and tree rotation. For food security and C sequestration, coppicing fallows are a potentially viable option.  相似文献   

5.
6.
Incorporation of forest slash during stand establishment is proposed as a means of increasing soil carbon and nutrient stocks. If effective, the increased soil carbon and nutrient status may result in increased aboveground tree growth. Eight years after study installation, the impact of forest slash incorporation into the soil on soil carbon and nutrient stocks, foliar nutrients and loblolly pine growth are examined on mineral and organic sites on the North Carolina Lower Coastal Plain. Treatments include leaving forest slash on the surface and flat planting (control); V-shear and bedding (conventional), mulch forest slash followed by bedding (strip mulch) and mulch forest slash and till into the soil followed by bedding (strip mulch till). After eight years, mulching and/or tillage did not have a significant impact (p > 0.05) on soil bulk density or soil chemical properties (pH, cation exchange capacity, soil nutrients). Additionally, neither tree foliar nutrients nor stand volume were significantly impacted. However, significant effects were observed for soil phosphorus contents and stand volume between the control plots and the other treatment plots. For example, the mean stand volumes on the mineral site were 24.49 ± 1.28, 38.16 ± 2.90, 44.59 ± 3.07 and 46.96 ± 2.74 m3 ha−1 for the control, conventional, strip mulch and strip mulch till plots. These observations are more likely due to the effect of bedding rather than mulching or tillage of the forest slash. These results are consistent for the mineral and the organic sites. Considering the greater expense to install the mulch and tillage treatments, the lack of a treatment effect on soil carbon and nutrient stocks and tree growth does not justify these treatments on these sites.  相似文献   

7.
Land management in tropical woodlands is being used to sequester carbon (C), alleviate poverty and protect biodiversity, among other benefits. Our objective was to determine how slash-and-burn agriculture affected vegetation and soil C stocks and biodiversity on an area of miombo woodland in Mozambique, and how C stocks and biodiversity responded once agriculture was abandoned. We sampled twenty-eight 0.125 ha plots that had previously been cleared for subsistence agriculture and had been left to re-grow for 2 to ∼25 years, and fourteen 0.25 ha plots of protected woodlands, recording stem diameter distributions and species, collecting wood for density determination, and soil from 0 to 0.3 m for determination of %C and bulk density. Clearance for agriculture reduced stem wood C stocks by 19.0 t C ha−1. There were significant relationships between period of re-growth and basal area, stem numbers and stem biomass. During re-growth, wood C stocks accumulated at 0.7 t C ha−1 year−1. There was no significant difference in stem C stocks on woodlands and on abandoned farmland 20–30 years old. Soil C stocks in the top 0.3 m on abandoned land had a narrower range (21–74 t C ha−1) than stocks in woodland soils (18–140 t C ha−1). There was no discernible increase in soil C stocks with period of re-growth, suggesting that the rate of accumulation of organic matter in these soils was very slow. The re-growing plots did not contain the defining miombo species, and total stem numbers were significantly greater than in woodland plots, but species richness and diversity were similar in older abandonments and miombo woodlands. Wood C stocks on abandoned farmland were capable of recovery within 2–3 decades, but soil C stocks did not change on this time-scale. Woodland soils were capable of storing >100 t C ha−1, whereas no soil on a re-growing area exceeded 74 t C ha−1, so there is a potential for C sequestration in soils on abandoned farmland. Management should focus on identifying C-rich soils, conserving remaining woodlands to protect soil C and preserve defining miombo species, and on investigating whether fire control on recovering woodland can stimulate accumulation of soil C and greater tree biomass, and restore defining miombo species.  相似文献   

8.
Wood quality attributes were examined in six stands of slash pine (Pinus elliottii Engelm. var. elliottii) and loblolly pine (P. taeda L.) in the lower Coastal Plain of Georgia and Florida. Several plots comprised each stand, and each plot was divided so that it received three fertilizer treatments: a control treatment with herbaceous weed control at planting and brush control at mid-rotation only (control); 45 kg ha−1 N + 56 kg ha−1 P + herbaceous weed control at planting and 224 kg ha−1 N + 45 kg ha−1 P + brush control at mid-rotation (fertilizer with N at planting); and 56 kg ha−1 P + herbaceous weed control at planting and 224 kg ha−1 N + 45 kg ha−1 P + brush control at mid-rotation (fertilizer without N at planting). Ring width, ring earlywood specific gravity (SG), ring latewood SG, whole ring SG, and ring percent latewood were measured on each of seven trees. Of these measurements, this study focused mainly on the properties related to SG. Examination of the rings showed that latewood SG was significantly lower in trees treated with fertilizers with and without N at planting in the two to three years following fertilization, but that latewood SG gradually returned to a level similar to the control. Fertilizer without N at planting may also have had a brief negative effect on earlywood SG following mid-rotation fertilization, but it was not as clear or lasting as the effect on latewood SG. Additionally, although slash and loblolly pine appear to differ in the developmental patterns of these SG properties, there were no significant differences in how these patterns interacted with treatment. This study demonstrated that fertilization treatments have similar short-term effects on the SG of slash and loblolly pines, particularly in latewood, but the trees will return to a SG pattern consistent with unfertilized trees within two or three years.  相似文献   

9.
Clear-cutting followed by mechanical site preparation is the major disturbance influencing nutrient and water fluxes in Fennoscandian boreal forests. The effects of soil harrowing on the fluxes of dissolved organic carbon (DOC), dissolved nitrogen compounds (organic N, NH4+ and NO3) and water soluble phosphorus (PO43−) through a podzolic soil were studied in a clear-cut in eastern Finland for 5 years. The old, mixed coniferous stand was clear-cut and stem only harvested in 1996 followed by soil harrowing in 1998 and planting in June 1999. Zero-tension lysimeters were used to collect soil water from below different soil horizons in the three types of microsites that resulted from site preparation treatment: low ridges (25% of clear-cut area), shallow furrows (30%) and the undisturbed soil (45%). After soil harrowing, the leaching of DOC, N and P from below the B-horizon increased compared to pre-treatment levels. However, the increases were short-lasting; 1–2 years for inorganic N and P, and 5 years for DOC and organic N. The highest concentrations were associated with the ridges and lowest with the furrows, reflecting the differences in amount of organic matter present in each microsite type and, for N, to enhanced mineralization and nitrification. Leaching from below the B-horizon over the 5 years following soil harrowing for the whole clear-cut area was 36.5 kg ha−1 for DOC, 0.88 kg ha−1 for NH4-N, 0.46 kg ha−1 for NO3-N, 1.24 kg ha−1 for organic N and 0.09 kg ha−1 for PO4-P. Site preparation increased temporarily the risk for nutrient leaching into watercourses and groundwater from the clear-cut area but soil fertility was not affected since the leached amounts remained small. The main reasons for the observed low leaching values were the rapid recovery of ground vegetation and low N deposition loads.  相似文献   

10.
Acacia plantation establishment might cause soil acidification in strongly weathered soils in the wet tropics because the base cations in the soil are translocated rapidly to plant biomass during Acacia growth. We examined whether soils under an Acacia plantation were acidified, as well as the factors causing soil acidification. We compared soils from 10 stands of 8-year-old Acacia mangium plantations with soils from 10 secondary forests and eight Imperata cylindrica grasslands, which were transformed into Acacia plantations. Soil samples were collected every 5–30 cm in depth, and pH and related soil properties were analyzed. Soil pH was significantly lower in Acacia plantations and secondary forests than in Imperata grasslands at every soil depth. The difference was about 1.0 pH unit at 0–5 cm and 0.5 pH unit at 25–30 cm. A significant positive correlation between pH and base saturation at 0–20 cm depth indicated that the low pH under forest vegetation was associated with exchangeable cation status. Using analysis of covariance (ANCOVA), with clay content as the covariate, exchangeable Ca (Ex-Ca) and Mg (Ex-Mg) stocks were significantly lower in forested areas than in Imperata grasslands at any clay content which was strongly related to exchangeable cation stock. The adjusted average Ex-Ca stock calculated by ANCOVA was 249 kg ha−1 in Acacia plantations, 200 kg ha−1 in secondary forests, and 756 kg ha−1 in Imperata grasslands at 0–30 cm. Based on a comparison of estimated nutrient stocks in biomass and soil among the vegetation types, the translocation of base cations from soil to plant biomass might cause a decrease in exchangeable cations and soil acidification in Acacia plantations.  相似文献   

11.
The effect of harvest residue management options on biomass and nutrient accumulation in understory vegetation, as well as the contribution of understory to nutrient cycling, were assessed during the early rotation stage of a Eucalyptus globulus Labill. plantation in Central Portugal. The effects of residue management options on early tree growth were also evaluated. Treatments established at the time of plantation and replicated four times in a simple completely randomised design included removal of harvest residues (R), incorporation of residues into the soil by harrowing (I) and maintenance of residues on the soil surface (S). Understory biomass was sampled in the spring between 2002 and 2006, and every 2 months between March 2006 and March 2007. The latter samples were stratified into biomass, standing dead mass and litter for net above ground primary production (NAPP) assessment. Samples were oven dried, weighed and analysed for nutrient contents. Results showed that understory standing biomass strongly increased from the first to the third year and that quantities of nutrients accumulated in ground vegetation followed similar patterns between the three treatments. Nutrient accumulation in ground vegetation was greater than in tree biomass until at least the second spring after plantation. Bimonthly sampling revealed treatment R to have the largest amounts of standing biomass, standing dead mass, litter and nutrient immobilisation, while treatment S exhibited the lowest values. NAPP (4th–5th year) was 639, 511 and 362 g m−2 year−1, respectively in R, I and S, corresponding the standing biomass increase to 277, 183 and 143 g m−2 year−1. These values are comparable to those observed for litter fall in similar stands (age and tree density) in the same area. The contribution of ground vegetation to nutrient accumulation in the system was unaffected by harvest residue management methods, but further research is necessary in order to establish whether slash management options influence long term tree growth and vegetation dynamics.  相似文献   

12.
We compared soil organic carbon (SOC) stocks and stability under two widely distributed tree species in the Mediterranean region: Scots pine (Pinus sylvestris L.) and Pyrenean oak (Quercus pyrenaica Willd.) at their ecotone. We hypothesised that soils under Scots pine store more SOC and that tree species composition controls the amount and biochemical composition of organic matter inputs, but does not influence physico-chemical stabilization of SOC. At three locations in Central Spain, we assessed SOC stocks in the forest floor and down to 50 cm in the mineral in pure and mixed stands of Pyrenean oak and Scots pine, as well as litterfall inputs over approximately 3 years at two sites. The relative SOC stability in the topsoil (0-10 cm) was determined through size-fractionation (53 μm) into mineral-associated and particulate organic matter and through KMnO4-reactive C and soil C:N ratio.Scots pine soils stored 95-140 Mg ha−1 of C (forest floor plus 50 cm mineral soil), roughly the double than Pyrenean oak soils (40-80 Mg ha−1 of C), with stocks closely correlated to litterfall rates. Differences were most pronounced in the forest floor and uppermost 10 cm of the mineral soil, but remained evident in the deeper layers. Biochemical indicators of soil organic matter suggested that biochemical recalcitrance of soil organic matter was higher under pine than under oak, contributing as well to a greater SOC storage under pine. Differences in SOC stocks between tree species were mainly due to the particulate organic matter (not associated to mineral particles). Forest conversion from Pyrenean oak to Scots pine may contribute to enhance soil C sequestration, but only in form of mineral-unprotected soil organic matter.  相似文献   

13.
Are current estimates of silicate minerals weathering rates precise enough to predict whether nutrient pools will recover after forest harvesting? Answering this question seems crucial for sustainable forestry practices on silicate dominated soils. In this paper, we synthesize estimated Ca and K weathering rates (derived using seven different approaches) from a forested area in northern Sweden (the Svartberget-Krycklan catchment) to evaluate the precision of weathering rate estimates. The methods were: mass-balance budgets (catchment and pedon-scale); long-term weathering losses inferred from weathered soil profiles (using zirconium as a conservative tracer); strontium isotopes (86Sr/85Sr) as proxy for catchment export of geogenic Ca; climate based regressions; a steady-state, process-based weathering model (PROFILE) and a dynamic, conceptual catchment geochemistry model (MAGIC). The different methods predict average weathering rates of 0.67 ± 0.71 g Ca m−2 year−1 (mean ± stdev) and 0.39 ± 0.38 g K m−2 year−1, suggesting a cumulative weathering release during a forest rotation period of 100 years that is the same magnitude as losses induced by forest harvesting at the end of the period. Clearly, forestry practices have the capacity to significantly alter the long-term nutrient status of the soil and cation concentrations in soil-water runoff. However, the precision in weathering estimates are lower than that needed to distinguish between effects on nutrient pools by different forest practices (complete-tree harvesting versus conventional stem only harvest). Therefore, we argue that nutrient budgets, where weathering rates play a crucial role, cannot be used as basis for resolving whether different harvesting techniques will allow nutrient pools to recover within one rotation period. Clearly, this hampers the prerequisite for sound decision making regarding forestry practices on silicate mineral dominated soils.  相似文献   

14.
We examined the potential growth of clonal Eucalyptus plantations at eight locations across a 1000+ km gradient in Brazil by manipulating the supplies of nutrients and water, and altering the uniformity of tree sizes within plots. With no fertilization or irrigation, mean annual increments of stem wood were about 28% lower (16.2 Mg ha−1 yr−1, about 33 m3 ha−1 yr−1) than yields achieved with current operational rates of fertilization (22.6 Mg ha−1 yr−1, about 46 m3 ha−1 yr−1). Fertilization beyond current operational rates did not increase growth, whereas irrigation raised growth by about 30% (to 30.6 Mg ha−1 yr−1, about 62 m3 ha−1 yr−1). The potential biological productivity (current annual increment) of the plantations was about one-third greater than these values, if based only on the period after achieving full canopies. The biological potential productivity was even greater if based only on the full-canopy period during the wet season, indicating that the maximum biological productivity across the sites (with irrigation, during the wet season) would be about 42 Mg ha−1 yr−1 (83 m3 ha−1 yr−1). Stands with uniform structure (trees in plots planted in a single day) showed 13% greater growth than stands with higher heterogeneity of tree sizes (owing to a staggered planting time of up to 80 days). Higher water supply increased growth and also delayed by about 1 year the point where current annual increment and mean annual increment intersected, indicating opportunities for lengthening rotations for more productive treatments as well as the influence of year-to-year climate variations on optimal rotations periods. The growth response to treatments after canopy closure (mid-rotation) related well with full-rotation responses, offering an early opportunity for estimating whole-rotation yields. These results underscore the importance of resource supply, the efficiency of resource use, and stand uniformity in setting the bounds for productivity, and provide a baseline for evaluating the productivity achieved in operational plantations. The BEPP Project showed that water supply is the key resource determining levels of plantation productivity in Brazil. Future collaboration between scientists working on silviculture and genetics should lead to new insights on the mechanisms connecting water and growth, leading to improved matching of sites, clones, and silviculture.  相似文献   

15.
In the future it may become common practice to return wood-ash to forest ecosystems in order to replenish nutrients removed when brash has been extracted as a source of bioenergy. Wood-ash contains most of the nutrients that are present in the brash before its removal and burning, with the important exception of nitrogen (N). In the present paper we report measurements of CO2 emissions and net N mineralisation in the humus layer and the upper 5 cm of mineral soil 12 years after the application of wood-ash to two study sites, representing different tree species, climatic conditions and N deposition histories. We hypothesized that application of wood-ash would increase both carbon (C) and net N mineralisation rates at Torup, an N-rich site with Norway spruce (Picea abies (L.) Karst.) in the south, whereas the net N mineralisation rates would not be affected at Vindeln, an N-poor site with Scots pine (Pinus sylvestris L.) in the north, where a possible N-limitation would restrict any N mineralisation. The treatments, comprising additions of 0, 1, 3 or 6 Mg of granulated wood-ash ha−1, were applied in a randomised block design, replicated three times. Wood-ash from the same batch was used for all treatments at both sites. All factors were measured under laboratory conditions with controlled temperature and moisture levels. The potential CO2 emissions (kg ha−1 year−1 of CO2–C) at Torup were significantly higher in the 3 and 6 Mg ha−1 treatments than in the control treatment, and the highest application resulted in an extra loss of 0.5 Mg ha−1 of soil C annually as compared to the control. No such differences were detected at Vindeln. The results suggest that wood-ash application can deplete soil organic C at locations with similar characteristics (N-rich soil, spruce dominated, warm climate) as at Torup in this study.  相似文献   

16.
Efforts are needed in order to increase confidence for carbon accounts in the land use sector, especially in tropical forest ecosystems that often need to turn to default values given the lack of precise and reliable site specific data to quantify their carbon sequestration and storage capacity. The aim of this study was then to estimate biomass and carbon accumulation in young secondary forests, from 4 and up to 20 years of age, as well as its distribution among the different pools (tree including roots, herbaceous understory, dead wood, litter and soil), in humid tropical forests of Costa Rica. Carbon fraction for the different pools and tree components (stem, branches, leaves and roots) was estimated and varies between 37.3% (±3.3) and 50.3% (±2.9). Average carbon content in the soil was 4.1% (±2.1). Average forest plant biomass was 82.2 (±47.9) Mg ha−1 and the mean annual increment for carbon in the biomass was 4.2 Mg ha−1 yr−1. Approximately 65.2% of total biomass was found in the aboveground tree components, while 14.2% was found in structural roots and the rest in the herbaceous vegetation and necromass. Carbon in the soil increased by 1.1 Mg ha−1 yr−1. Total stored carbon in the forest was 180.4 Mg ha−1 at the age of 20 years. In these forests, most of the carbon (51-83%) was stored in the soil. Models selected to estimate biomass and carbon in trees as predicted by basal area had R2 adjustments above 95%. Results from this study were then compared with those obtained for a variety of secondary and primary forests in different Latin-American tropical ecosystems and in tree plantations in the same study area.  相似文献   

17.
An important window of opportunity to increase and sustain productivity in short-rotation plantations is the period from felling through re-establishment to canopy closure. This paper explores the effects, interactions and response mechanisms of intensive silvicultural practices on plantation productivity and sustainability, using five South African case studies (a–e). (a) Land preparation trials showed that complete surface cultivation by ploughing had a significant beneficial effect when afforestation is done for the first time in grasslands, improving basal area growth by 11–52% over pitting only. However, similar treatments have not resulted in significant growth responses under re-establishment conditions. (b) Stand growth suppression resulting chiefly from soil compaction during mechanised harvesting operations is strongly related to soil type, soil textural class and residue management options. Volume growth reduction in short-rotation eucalypt crops ranged from 25% on compaction sensitive loamy soils to less than 2% in resistant sandy soils. (c) The response mechanism whereby vegetation management improves stand productivity is a reduction in both inter-specific and intra-genotypic competition for resources, as well as a decrease in stand variability. Operationally, the most important criteria in a vegetation management programme relate to the timing of control operations across diverse site conditions. In local trials, the primary factors controlling the time taken for competition-induced tree growth suppression to occur were related to altitude, slash burning and the interaction between these factors, which facilitated the development of regional vegetation management strategies. (d) Empirical fertilizer trials in short-rotation hardwood stands have shown significant improvements in final productivity (commonly 20–90 m3 ha−1 in eucalypts and 30–50 m3 ha−1 in Acacia), as well as wood density (15–30 kg m−3 for eucalypts) following improvements in early nutrition. Improved nutrition was achieved through fertilization at planting or indirectly through residue management. The response mechanism is primarily due to early canopy development and associated increases in light capture, coupled with a more modest increase in canopy quantum efficiency and above-ground carbon allocation on a dry site. On sites with abundant water supply, increased quantum efficiency is likely to be the dominant response mechanism. (e) A series of operational gains trials tested the interactive effect of genetic tree improvement, site–genotype interaction, stand density and vegetation management + fertilization on eucalypt stand growth across five sites. There were no significant interactions between factors, but importantly, the results were additive, emphasizing the need to optimise each practice in the value chain to achieve maximum productivity.  相似文献   

18.
We studied the carbon density and accumulation in trees at five sites in a tropical dry forest (TDF) to address the questions: how is the TDF structured in terms of tree and carbon density in different DBH (diameter at breast height) classes? What are the levels of carbon density and accumulation in the woody species of TDF? Is the vegetation carbon density evenly distributed across the forest? Does carbon stored in the soil reflect the pattern of aboveground vegetation carbon density? Which species in the forest have a high potential for carbon accumulation? The WSG among species ranged from 0.39 to 0.78 g cm−3. Our study indicated that most of the carbon resides in the old-growth (high DBH) trees; 88-97% carbon occurred in individuals ?19.1 cm DBH, and therefore extra care is required to protect such trees in the dry forest. Acacia catechu, Buchanania lanzan, Hardwickia binata, Shorea robusta and Terminalia tomentosa accounted for more than 10 t ha−1 carbon density, warranting extra efforts for their protection. Species also differed in their capacity to accumulate carbon indicating variable suitability for afforestation. Annually, the forest accumulated 5.3 t-C ha−1 yr−1 on the most productive, wettest Hathinala site to 0.05 t-C ha−1 yr−1 on the least productive, driest Kotwa site. This study indicated a marked patchy distribution of carbon density (151 t-C ha−1 on the Hathinala site to 15.6 t-C ha−1 on the Kotwa site); the maximum value was more than nine times the minimum value. These findings suggest that there is a substantial scope to increase the carbon density and accumulation in this forest through management strategies focused on the protection, from deforestation and fire, of the high carbon density sites and the old-growth trees, and increasing the stocking density of the forest by planting species with high potential for carbon accumulation.  相似文献   

19.
In the Eden area in NSW, Australia, low fertility granitic surface soils were sampled from 156 sites and analysed for pH, organic C, total N, total P, available P, exchangeable bases and exchangeable Al. Fifty eight of these sites were also sampled to a depth of 40 cm. Time since fire ranged from 1 to 39 years and was used in the analysis as a surrogate for fire frequency. No information was available on fire intensity. No significant relationships were found between time since fire and P or base cations. However, the quantities of organic matter and total N (kg ha−1), and the C/N ratio were significantly related to both time since fire alone and to the combination of time since fire and soil total P. Based on these relationships, it was estimated that there were average net increases of between 11 and 21 kg N ha−1 year−1 in surface soil, the actual quantity depending on the level of soil total P. There was little change in N in the initial 10 years after fire and there was a peak in N accumulation about 24 years after fire. The C/N ratio and surface soil pH decreased with time since fire. Accumulation of N and reductions in pH and C/N ratio were studied further in a small scale paired plot analysis. The repeatedly burnt plots had lower levels of both litter and understorey and the overstorey trees generally had healthier crowns than in the unburnt plots. The differences between the repeatedly burnt and the unburnt plots matched the models developed from the general survey. There were no significant changes in the C/N ratio, but the unburnt sites had higher levels of extractable mineral N and the relationships between the mineral N and the C/N ratio for burnt and unburnt sites were statistically significant. The quantities of extractable mineral N in the unburnt soils (2.3 kg N ha−1) were about twice the levels in the burnt soils (1.2 kg N ha−1). The pH of the surface soil (4.4 in 1:1 water) in the regularly burnt area was higher than in the unburnt area (pH 4.1) and the exchangeable aluminium also differed (0.62 c mol−1 in the burnt area and 1.3 c mol−1 in the unburnt). The combined data indicate that changes occur in forest soils when there is a long period of exclusion of fire. It is suggested that these changes generally lead to secondary changes, such as in pH and availability of other elements such as aluminium. The study highlights a number of issues including the rates of inputs of N to the system and the question of N saturation and its long term interaction with plant species. It is hypothesised that reduced burning leads to increased N availability and other soil changes which negatively impact on tree health.  相似文献   

20.
This study was conducted to determine carbon (C) dynamics following forest tending works (FTW) which are one of the most important forest management activities conducted by Korean forest police and managers. We measured organic C storage (above- and below-ground biomass C, forest floor C, and soil C at 50 cm depth), soil environmental factors (soil CO2 efflux, soil temperature, soil water content, soil pH, and soil organic C concentration), and organic C input and output (litterfall and litter decomposition rates) for one year in FTW and non-FTW (control) stands of approximately 40-year-old red pine (Pinus densiflora S. et Z.) forests in the Hwangmaesan Soopkakkugi model forest in Sancheonggun, Gyeongsangnam-do, Korea. This forest was thinned in 2005 as a representative FTW practice. The total C stored in tree biomass was significantly lower (P < 0.05) in the FTW stand (40.17 Mg C ha−1) than in the control stand (64.52 Mg C ha−1). However, C storage of forest floor and soil layers measured at four different depths was not changed by FTW, except for that at the surface soil depth (0–10 cm). The organic C input due to litterfall and output due to needle litter decomposition were both significantly lower in the FTW stand than in the control stand (2.02 Mg C ha−1 year−1 vs. 2.80 Mg C ha−1 year−1 and 308 g C kg−1 year−1 vs. 364 g C kg−1 year−1, respectively, both P < 0.05). Soil environmental factors were significantly affected (P < 0.05) by FTW, except for soil CO2 efflux rates and organic C concentration at soil depth of 0–20 cm. The mean annual soil CO2 efflux rates were the same in the FTW (0.24 g CO2 m−2 h−1) and control (0.24 g CO2 m−2 h−1) stands despite monthly variations of soil CO2 efflux over the one-year study period. The mean soil organic C concentration at a soil depth of 0–20 cm was lower in the FTW stand (81.3 g kg−1) than in the control stand (86.4 g kg−1) but the difference was not significant (P > 0.05). In contrast, the mean soil temperature was significantly higher, the mean soil water content was significantly lower, and the soil pH was significantly higher in the FTW stand than in the control stand (10.34 °C vs. 8.98 °C, 48.2% vs. 56.4%, and pH 4.83 vs. pH 4.60, respectively, all P < 0.05). These results indicated that FTW can influence tree biomass C dynamics, organic C input and output, and soil environmental factors such as soil temperature, soil water content and soil pH, while soil C dynamics such as soil CO2 efflux rates and soil organic C concentration were little affected by FTW in a red pine stand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号