首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用腐殖酸、明矾(主要成分为硫酸铝钾)、沸石(主要成分为硅酸盐)、白云石(主要成分为碳酸镁钙)4种调理剂及不同配比,共设7个处理对高磷土壤磷素转化与吸收的影响进行研究。结果表明,施加土壤调理剂可以促进玉米生长,玉米的株高、茎粗与叶绿素含量有所提高。在施加调理剂的各处理中,沸石+明矾+腐殖酸+白云石配合施用处理可以有效地增加玉米生物量,提高玉米吸磷量。单施明矾处理和沸石+明矾+腐殖酸+白云石配合处理可促进土壤有机磷矿化,而单施沸石处理和沸石+明矾+腐殖酸+白云石配合处理趋于使土壤磷素钝化,Ca_8-P和Ca_(10)-P含量增加,而Ca_2-P含量降低,减弱了环境风险。沸石+明矾+腐殖酸+白云石调理剂配合施用对于高磷土壤中磷的吸收和转化效果最佳,可以降低潜在磷的环境风险。试验结果将为设施高磷土壤磷素面源污染控制提供技术途径。  相似文献   

2.
腐植酸增效剂对不同类型土壤中磷素形态转化的调控   总被引:1,自引:0,他引:1  
本试验选用采自中国农业科学院德州禹城试验基地的潮土和江西省农业科学院的红壤为材料,进行持续90 d的土壤培养试验,以研究腐植酸增效剂对土壤磷素形态转化的调控作用,为增效磷肥的研制和开发提供理论依据。试验设置5个处理:CK(不施磷肥)、CK1(单施磷酸二铵)、HA1(磷酸二铵+2.5%活化腐植酸)、HA2(磷酸二铵+5.0%活化腐植酸)和HA3(磷酸二铵+10.0%活化腐植酸)。结果表明,与CK及CK1相比,磷肥中加入5.0%~10.0%活化腐植酸可显著提高培养15~90 d内土壤有效磷含量;添加10.0%活化腐植酸处理可以显著增加培养前期潮土Ca_2-P、Ca_8-P、Al-P和Fe-P含量和培养后期Ca_2-P含量,并可增加红壤培养中后期Ca_2-P、Ca_8-P及前中期Fe-P含量;添加5.0%活化腐植酸处理可以增加潮土整个培养期Ca_2-P及前期Ca_8-P和Fe-P含量,并可增加红壤培养后期Ca_2-P和中后期Ca_8-P含量;添加2.5%活化腐植酸处理可以显著增加潮土整个培养期Ca_2-P含量和前期Ca_8-P含量;3个添加量的活化腐植酸处理均可降低红壤整个培养期的Al-P含量。表明腐植酸增效剂促进土壤磷素的释放,显著提高土壤磷的有效性。  相似文献   

3.
生物炭调节盐化水稻土磷素形态及释放风险研究   总被引:4,自引:2,他引:2  
为探明生物炭施用对盐化水稻土磷素形态及释放风险的影响,以滨海草甸盐化水稻土为基础,结合室内分析,研究了不同用量生物炭还田方式(CK:0 t·hm~(-2);B1:20 t·hm~(-2);B2:40 t·hm~(-2))条件下土壤磷含量、组分特征及磷素释放风险。结果表明:生物炭能提高土壤全磷、有效磷、总有机磷和总无机磷含量,提高幅度分别为:11.40%~35.70%、28.96%~46.63%、11.30%~29.19%和10.54%~25.98%。生物炭提高了土壤NaHCO_3浸提态磷(Ca_2-P)、NH_4AC浸提态磷(Ca_8-P)和NH_4F浸提态磷(Al-P)含量,随着施炭量的增加而增大,且各处理间差异显著;当施炭量为20 t·hm~(-2)时,土壤NaOH-Na_2CO_3浸提态磷(Fe-P)和闭蓄态磷(O-P)含量显著高于其他处理;施用生物炭对H_2SO_4浸提态磷(Ca_(10)-P)无显著影响。生物炭显著提高了土壤活性有机磷(LOP)和中等活性有机磷(MLOP)含量,但显著降低了土壤中等稳定性有机磷(MROP)含量,当施炭量为40 t·hm~(-2)时,土壤高等稳定性有机磷(HROP)含量最小,且显著低于其他处理。本试验中土壤的活性Al[Al(ox)]和活性Fe[Fe(ox)]均处于较高水平;施用生物炭显著提高了土壤磷吸持指数(PSI),增加了土壤固磷能力;土壤磷吸持饱和度(DPSS)为6.81%~8.34%,土壤磷释放风险指数(ERI)为54.55%~61.67%。综上所述,在本文试验条件下,施用生物炭可以改善盐化水稻土磷素状况,且不会增大土壤磷素释放的风险。  相似文献   

4.
生物炭与螯合剂配施条件下土壤无机磷的动态变化   总被引:1,自引:0,他引:1  
为了提高土壤磷素使用的有效性,以辽宁碱性土壤为研究对象进行试验研究。采用室内培养,测定了在不同地力下,生物炭与3种螯合剂(草酸、柠檬酸、EDTA)在低中高三种浓度下对土壤磷素的活化规律。从各形态无机磷自身活化情况来看,土壤中Ca_2-P、Ca_8-P的含量有所提高。其中Al-P的活化率最高,低中高地力在3种浓度下的平均活化率为34.5%,35.1%和35.3%,Ca-P的活化率最低,但是其贡献率最高,含量占到土壤总无机磷含量的74.4%、73.5%和72.9%。土壤无机磷总活化量以及各形态无机磷组分含量随着螯合剂浓度的升高而增多。相同浓度下,草酸的活化能力最强,其次为EDTA。低浓度时,柠檬酸对Fe-P的活化能力最强,草酸对Al-P的活化能力最强。在中、高浓度时,草酸对各形态无机磷的活化能力都最强。试验证明生物炭与螯合剂配施,可以有效增加土壤磷素无效态向有效态的转化。  相似文献   

5.
为探索溶磷细菌在复垦土壤中对磷的作用效果,采用室内摇瓶培养的方法,研究了溶磷细菌及其组合对磷酸钙的溶解能力,从而确定最佳组合,并探讨最佳组合溶磷细菌对复垦土壤有效磷及各形态无机磷含量的影响。结果表明,拉恩式菌(W2)+荧光假单胞菌1(W3)+荧光假单胞菌2(W4)培养液的有效磷含量最高,为609.1 mg/L,其为最佳溶磷细菌组合。施用此溶磷细菌组合肥可以增加复垦土壤有效磷含量,复垦土壤有效磷含量表现为BG(溶磷细菌肥+磷酸钙)处理B(溶磷细菌肥)处理MG(基质+磷酸钙)处理M(基质)处理CK(空白),其中,B处理在苗期、拔节期、收获期分别比M处理显著增加15.7%、119.7%、54.1%,BG处理在苗期、拔节期、收获期分别比MG处理显著增加55.8%、91.8%、88.9%。在玉米苗期和收获期,施用溶磷细菌可以增加复垦土壤Ca_2-P、Ca_8-P、Fe-P、Al-P含量,其中收获期B处理比基质处理M分别显著增加86.6%、88.7%、38.6%、83.3%;复垦土壤O-P和Ca_(10)-P含量均表现为MGBGMBCK,溶磷细菌对复垦土壤O-P含量影响较小,对Ca_(10)-P含量影响较大,苗期和收获期B、BG处理Ca_(10)-P含量分别比对应的基质处理M、MG处理降低5.8%、23.1%和9.5%、24.4%,即溶磷细菌可以减少复垦土壤Ca_(10)-P的含量。土壤有效磷含量与土壤Ca_2-P、Ca_8-P、Al-P、Fe-P含量呈极显著正相关,与O-P、Ca_(10)-P含量无显著相关性。  相似文献   

6.
【目的】在有机质含量相同的土壤上探讨土壤无机磷组分对有效磷的贡献,为合理的磷肥管理提供决策依据。【方法】采集并筛选陕西关中平原冬小麦-夏玉米种植区■土有机质含量相近(10.03—10.68 g·kg~(-1)),有效磷含量梯度(平均分别为10.73、18.06、20.61、24.01、30.73、43.69和58.58 mg·kg~(-1))的土壤样品,采用蒋柏藩-顾益初改进的Chang和Jackson无机磷分级方法进行磷组分测定。【结果】西北冬小麦-夏玉米种植区耕层土壤的无机磷以钙磷为主,约占无机磷总量的66.67%,其中磷酸二钙(Ca_2-P),磷酸八钙(Ca_8-P)和磷灰石(Ca_(10)-P)分别占2.80%、16.80%和47.09%;铝结合的磷酸盐(Al-P),铁结合的磷酸盐(Fe-P)和闭蓄态磷酸盐(O-P)分别占16.28%、5.23%和11.81%。随着Ca_2-P、Ca_8-P、Ca_(10)-P、Al-P、Fe-P和O-P含量的增加,Olsen P呈显著线性增加;磷活化系数(土壤有效磷与全磷之比,PAC)与Ca_2-P、Ca_8-P、Al-P、Fe-P和O-P呈显著线性正相关关系。通径分析结果表明,该区域土壤无机磷对土壤有效磷(Olsen P)的贡献依次为Ca_2-P(0.974)Al-P(0.186)Ca_8-P(0.182)Fe-P(0.150)Ca_(10)-P(0.007)O-P(-0.074),各形态无机磷对磷活化系数(PAC)的贡献为:Ca_2-P(0.768)Al-P(0.082)Ca_8-P(0.071)Fe-P(-0.018)Ca_(10)-P(-0.055)O-P(-0.388),与土壤磷组分对有效磷的贡献大体一致。逐步回归分析结果表明,Ca_2-P和Ca_8-P对Olsen P贡献最大,但仅Ca_2-P对PAC的贡献最大。【结论】在有机质相同或相近条件下,Ca_2-P是陕西关中平原小麦-玉米种植区■土最有效的磷源。土壤磷有效性的提高主要通过增加高有效性的磷形态比(例如Ca_2-P)和缓效磷形态(如Ca_8-P、Al-P),降低土壤中有效性极低的Ca_(10)-P的比例来实现的。由此看来,关中平原长期施用磷肥土壤磷仍主要以有效性相对较高的磷素形态存在。  相似文献   

7.
为探究土壤不同水分条件下生物炭对红壤磷素形态转化及磷酸酶活性的影响,以期为土壤磷素管理和生物炭合理利用提供参考。通过设置土壤不同含水量(33%、66%、100%)与生物炭添加量(0、0.5%、2%)进行培养试验,测定土壤的有效磷、各磷素形态(Al-P、Ca-P、Fe-P、O-P)及土壤酸性磷酸酶与碱性磷酸酶活性。结果表明:生物炭的施入显著提高了土壤有效磷含量;在培养前期,生物炭主要增加土壤中难溶态的Al-P含量,这主要是由生物炭带来的可溶性磷进入土壤中转化所导致;在培养后期,水分与生物炭都能够在一定程度上活化土壤中的Ca-P、Fe-P与O-P,释放更多磷素。生物炭本身呈碱性,添加到土壤中,有效中和了土壤酸度,使得土壤pH值上升2.82~3.13个单位,土壤酸性磷酸酶活性下降。此外,淹水条件能够降低土壤的酸性磷酸酶与碱性磷酸酶活性。研究表明,生物炭的添加能够有效提高土壤pH值、有效磷含量,同时降低土壤酸性磷酸酶的活性。  相似文献   

8.
从石灰性土壤中分离,筛选出解磷细菌,进行油菜盆栽生物模拟试验,研究了北方石灰性土壤中解磷细菌对磷形态的影响,结果表明:在石灰性土壤中,解磷细菌可以促进Ca2-P、Al-P、Fe-P增加,降低土壤中难溶态Ca10-P、缓效态Ca8-P,对O-P影响不明显,从而证明了解磷细菌能够促进石灰性土壤中磷素形态向易被作物利用状态转化,减缓向缓效态、难溶态的转化。  相似文献   

9.
长期定点施肥对白浆土磷素形态转化的影响   总被引:3,自引:0,他引:3  
通过对长期定点下不同施肥处理对磷素形态转化的研究,结果表明:在有机肥(OM)处理中,土壤无机磷主要向Fe-P、Al-P和Ca2-P转化,Fe-P的转化率最高,土壤有机磷向各组分有机磷均有所转化,转化率的大小顺序为:中活性有机磷>活性有机磷>高稳性有机磷>中稳性有机磷;在化肥(NP)处理中,土壤无机磷主要向Fe-P、O-P和Al-P转化,土壤中的有机磷主要向中稳性有机磷转化;在秸秆还田(TS)处理中,土壤无机磷主要向Ca2-P、Al-P、Fe-P转化,但它们的转化率均不高,土壤有机磷主要向中稳性有机磷、高稳性有机磷转化。  相似文献   

10.
利用盆栽试验,在不同肥力的石灰性潮土上种植小麦,设施磷与不施磷处理,采用Olsen法测定土壤中速效磷含量,探讨不同处理间土壤有效磷含量的变化情况。试验结果表明,施用磷肥不能使有效磷本来就高的土壤中的有效磷含量继续提高,却可以明显提高中低肥力土壤中速效磷含量;测定施用磷肥和不施磷肥处理小麦苗期土壤分级变化情况(蒋柏藩、顾益初提出的"石灰性土壤无机磷分级方法")表明,在石灰性潮土上,Ca-P含量很高,Ca_2-P为小麦吸收磷素的有效来源,Ca_8-P、Fe-P、Al-P为缓效磷源,短时期内Ca_(10)-P变化不大。研究还表明,在低肥力条件下,施入磷肥可以提高小麦的鲜质量,在高肥力下,施入磷肥之后小麦鲜质量也有所提升,但是变化量不如低肥力条件下明显。  相似文献   

11.
采用腐植酸、草本生物炭(秸秆炭)、膨润土、明矾、脱磷石膏5种调理剂及配合施用共设10个处理对高磷土壤磷素转化与吸收的影响进行研究。结果表明,施加调理剂可以有效提高玉米的株高、茎粗与叶绿素含量。在施加调理剂的各处理中,单施明矾和生物炭+膨润土+明矾配合施用处理可以有效增加玉米的生物量,提高玉米的吸磷量。单施膨润土和明矾的处理则可以促进土壤中有机磷的矿化,而单施脱磷石膏以及腐植酸+膨润土+生物炭+明矾+脱磷石膏配合施用趋于土壤钝化,减少磷的移动性,降低环境风险。  相似文献   

12.
采用腐植酸和生物炭两种调理剂配合施用,共设空白对照、生物炭、腐植酸、腐植酸+生物炭、腐植酸+1/2生物炭、1/2腐植酸+生物炭等6个处理,研究两种调理剂配施对甜高粱生长和土壤磷素吸收状况的影响。结果表明,单施腐植酸和生物炭有利于饲用甜高粱拔节期的生长,对于饲用甜高粱抽穗期,腐植酸和生物炭处理配合施用效果较好,各处理中以1/2腐植酸+生物炭处理效果最佳,能促进高粱茎叶对土壤磷素吸收,提高磷素利用率,减少磷素环境风险。  相似文献   

13.
【目的】为了评价溶磷微生物对提高复垦土壤有效性的作用.【方法】通过PVK平板稀释法从石灰性土壤中分离筛选出7株溶磷细菌,7株菌株的溶磷能力在296.5~563.5 mg/kg之间,菌株的溶磷能力与溶磷圈直径(D)/菌落直径(d)的比值呈显著正相关;16sRNA序列分析表明,W_1、W_6属于Enterobacter sp.,W_2、W_4属于Burkholderia sp.,W_3、W_5属于Rahnella sp.,W_7属于Fluorescent pseudomonas.选择W_1、W_3、W_4、W_7作为试验菌株,研究其对复垦土壤有效磷、磷酸酶及各形态无机磷含量的影响.【结果】溶磷细菌可以提高复垦土壤有效磷含量、降低pH、增加磷酸酶含量,与接种灭菌菌液处理相比,4株溶磷细菌对复垦土壤有效磷增加在0.30~3.72 mg/kg之间,降低pH 0.03~0.09之间,土壤碱性和酸性磷酸酶提高幅度在9.68~34.22 mg/kg和0.21~47.66 mg/kg;溶磷细菌不仅可以增加复垦土壤Ca_2-P、Ca_8-P、Fe-P、Al-P的含量,而且可以显著减少复垦土壤Ca_(10)-P,与接种灭菌菌液处理相比,4株菌株增加Ca_2-P、Ca_8-P、Fe-P、Al-P的范围分别在4.7%~33.8%、11.1%~26.0%、5.3%~24.1%、4.8%~30.0%,Ca_(10)-P的减少幅度在12.9%~14.9%,溶磷细菌对O-P影响不显著.【结论】溶磷细菌在提高复垦土壤磷素有效性方面发挥着重要的作用.  相似文献   

14.
研究了3个不同密度杨树林(南林95杨,Poplar Nanlin 95)河岸缓冲带在不同宽度对径流水中磷素的截留效果,测定水、土壤以及植物样内总磷和无机磷含量,分析河岸植被缓冲带截留磷素的机制。结果表明,杨树林河岸植被缓冲带的最适宽度为30 m;15 m宽度即可截留60%的总磷;杨树林的最适种植密度为1 600株/hm~2。土壤对磷素的截留量是河岸植被缓冲带总截留量的80%。无机磷各组分中,能被植物直接吸收利用的磷酸二钙型磷(Ca_2-P)和磷酸八钙型磷(Ca_8-P)含量较低,且随宽度增加而降低;闭蓄态磷(O-P)和铁结合态磷(Fe-P)含量很高,和磷酸十钙型磷(Ca_(10)-P)三者含量随宽度增加没有明显变化。  相似文献   

15.
本文通过室内培养试验研究了五种外源有机络合剂(柠檬酸、腐殖酸、二乙三胺五乙酸、氨基三乙酸和类羧酸)对土壤磷素数量和形态的影响。结果表明:氨基三乙酸使土壤Ca2-P、Ca8-P、Fe-P含量均显著增加,而O-P含量显著减少;柠檬酸使Ca2-P含量显著增加。五种外源有机络合剂施入土壤后,除柠檬酸外,其他四种外源有机络合剂均使土壤pH值显著降低,其酸化能力由大到小的顺序为:氨基三乙酸>二乙三胺五乙酸>腐殖酸>类羧酸。单相关分析表明,土壤速效磷与Ca2-P、Fe-P均呈极显著和显著的正相关关系,外源有机络合剂通过促进土壤无机磷各形态间相互转化而活化了土壤中的无机磷。  相似文献   

16.
施磷量对棉田土壤不同形态无机磷的影响   总被引:2,自引:0,他引:2  
【目的】土壤磷形态的组成和强度对提高作物磷的生物有效性和磷肥的利用效率具有重要的作用。研究磷肥用量对棉田土壤无机磷形态和数量的影响,为集约化棉花生产体系中磷肥合理施用提供技术基础。【方法】本文以新陆早57号、新陆早50号和新陆早13号为研究对象,设置4个不同供磷水平[0 kg/hm~2(P0)、75 kg/hm~2(P75)、150 kg/hm~2(P150)、400 kg/hm~(2 )(P400)],在棉花磷素营养关键的苗期和花铃期测定不同土层土壤无机磷含量。【结果】与对照(P0)相比,低量施磷(P75)下,苗期根层(0~20 cm土层)土壤Ca_2-P、Ca_8-P、Ca_(10)-P、Fe-P、Al-P分别平均增加了68.5%、42.0%、-17.6%、38.8%、60.5%,花铃期根层(0~20 cm土层)土壤Ca_2-P、Ca_8-P、Ca_(10)-P、Fe-P、Al-P分别平均增加了52.8%、18.8%、-17.7%、38.3%、44.7%;适量施磷(P150)下,苗期分别平均增加了148.9%、88.1%、-31.5%、65.6%、46.7%,花铃期分别平均增加了113.7%、54.5%、29.4%、77.6%、27.7%;过量施磷(P400)下,苗期分别平均增加了58.6%、53.4%、44.4%、105.8%、32.8%,花铃期分别平均增加了52.3%、19.3%、40.8%、143.8%、13.7%。不同棉花品种的比较显示,不同供磷条件下,苗期土壤Ca_8-P、Ca_(10)-P、Fe-P以XLZ50较高,Ca_2-P、Al-P以XLZ57较高;花铃期土壤Ca_8-P、Ca_(10)-P以XLZ50较高, Ca_2-P、Fe-P、Al-P以XLZ57较高。【结论】不同施磷水平和不同基因型棉花对土壤无机磷的积累均有不同程度的影响,其中150 kg P_2O_5/hm~2处理下棉田苗期和花铃期各土层Ca_2-P最高,XLZ57基因型棉花苗期和花铃期各土层Ca_2-P在施磷75~150 kg P_2O_5/hm~2处理下显著高于XLZ50和XLZ13。因此,合理施用磷肥(150 kg P_2O_5/hm~2)和合理种植棉花品种(XLZ57)可提高土壤中的有效磷源,从而提高磷肥利用效率。  相似文献   

17.
为了探明关中冬小麦-夏玉米产区典型土壤无机磷组分含量及其有效性,实现减磷增效、合理施用磷肥,提高土地生产力。于2018年采集陕西省关中平原冬小麦-夏玉米种植区塿土耕层(0~20 cm)样品,采用蒋柏藩与顾益初改进的无机磷分级法测定各无机磷组分含量,并结合相关分析与通径分析,比较各无机磷组分对有效磷的贡献。结果表明:塿土总无机磷含量为585.4~1513.8 mg/kg,各形态含量组成大小依次为Ca_(10)-P(36.8%~82.9%)Ca_8-P(5.0%~30.7%)O-P(6.4%~17.5%)Al-P(1.0%~16.6%)Fe-P(1.8%~17.2%)Ca_2-P(0.1%~4.8%);相关分析表明,各无机磷形态和有效磷的相关性大小依次为Ca_2-P(0.912)Ca_8-P(0.598)Al-P(0.569)Fe-P(0.531)O-P(0.426)Ca_(10)-P(0.138),仅Ca_(10)-P和有效磷不具有相关关系,其余无机磷形态和有效磷均有极显著相关关系;通径分析表明,各无机磷形态对有效磷的贡献大小依次为Ca_2-P(0.771)Ca_8-P(0.155)Fe-P(0.107)O-P(0.042)Al-P(0.010)Ca_(10)-P(-0.068)。其次,逐步回归分析结果也证实Ca_2-P、Ca_8-P和Fe-P是塿土有效磷的主要磷源,Al-P和O-P是缓效磷源,Ca_(10)-P则难以被作物吸收利用。  相似文献   

18.
日光温室土壤磷素积累、淋移和形态组成变化研究   总被引:5,自引:0,他引:5  
为了解日光温室土壤磷素积累、淋移状况和形态组成变化规律,测定了日光温室土壤P素含量和形态组成.结果表明,日光温室土壤P素积累严重、淋移强烈,5、10和14 a日光温室表层土壤速效P含量均超过200 mg/kg,0~100 cm 土层土壤速效P积累总量分别是温室外粮田的6.2、13.2和18.0倍,高龄温室底层土壤Olsen-P和水溶P含量高于温室外粮田表层含量.日光温室土壤磷素形态组成和比例与粮田土壤比较发生明显改变,土壤中不同形态无机P的含量由粮田土壤的Ca_(10)-P>Ca_8-P>Al-P>Fe-P>O-P>Ca_2-P变化为温室土壤Ca_8-P>Ca_(10)-P>Al-P>Ca_2-P>Fe-P>O-P.  相似文献   

19.
不同利用方式红壤磷素积累与形态分异的研究   总被引:2,自引:2,他引:2  
研究了不同利用方式红壤磷素积累、无机磷组分分异特点及各组分无机磷周年动态变化。结果表明:红壤全磷积累量表现为红壤旱地(804mg/kg)>红壤稻田(569mg/kg)>红壤茶园(459 mg/kg);红壤旱地Fe-P、A l-P、Ca2-P、Ca8-P和O-P的含量显著高于红壤稻田和红壤茶园,而Ca10-P的含量则差异不显著。施磷对所有组分无机磷周年动态变化产生影响;不同施磷方法对红壤磷素积累量以P+稻草处理>P处理>CK。积累的磷转化为各组分无机磷的转化量以Fe-P为最高,而转化率以Ca2-P、Ca8-P、A l-P较高。  相似文献   

20.
两种外源性有机物料对设施土壤磷变化的影响   总被引:1,自引:0,他引:1  
采用室内强化模拟试验研究了90 d培养期内稻草和草炭2种外源性有机物料对设施菜地土壤磷素转化的影响。结果显示,与对照相比,添加量为2 g C·kg-1和4 g C·kg-1的稻草处理土壤微生物生物量磷分别增加111.1%~310.0%和197.7%~356.3%,草炭处理分别增加23.7%~54.6%和63.2%~157.1%;添加量为2 g C·kg-1和4 g C·kg-1的稻草处理土壤有效磷平均降低了15.0%和20.2%,草炭处理土壤有效磷与对照差异在前期(45 d)并不显著;土壤易解吸磷30 d后持续降低,培养结束时稻草和草炭处理土壤易解吸磷均值分别降低了21.3%和10.9%。以培养结束时各组分磷占全磷的比例来看,稻草和草炭均可促进土壤无机态的Al-P、Fe-P、O-P及有机态的MLOP、HROP等组分向有机态的LOP和MROP转化,土壤微生物生物量磷、有效磷和易解吸磷均与Fe-P呈显著线性相关。研究表明,添加稻草和草炭有利于设施土壤磷素的管理,且稻草的效果总体上比草炭的要好;Fe-P是调控设施土壤磷素周转与流失的重要形态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号