首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Field experiments conducted in 2007/08 and 2008/09 at the Changwu Agricultural Research Station on the Loess Plateau of China comprised three seeding rates (SR1: 225 seeds m−2, SR2: 280 seeds m−2, and SR3: 340 seeds m−2) and two root pruning treatments (W: root pruning in the over-wintering period and S: root pruning at the spring-growth stage), with the un-pruned wheat plants as controls. In the severe drought toward the end of the growing season of 2008, grain yield decreased as the seeding rate increased, but under the more favorable conditions in 2009 the reverse was true. Averaged over the seeding rates, grain yield was significantly increased in both W and S in both years; grain yield and yield components were higher in W; and S recorded the highest water use efficiency. The interaction between seeding rate and root pruning was not statistically significant. Leaf area index (LAI) and tiller density were higher as seeding rates increased whereas in W and S, increased LAI and decreased tillers significantly, but had no effect on fertile tillers. The rate of leaf photosynthesis was lower and root respiration was significantly higher at higher seeding rates, whereas in root pruning treatments, significantly higher leaf photosynthetic rate and lower root respiration were observed. Soil water contents were lower as seeding rate increased. A significant decrease in water use before stem elongation was observed in W, while S consumed less soil water than W and the control over the whole growing season. Post-heading accumulation of dry matter and its remobilization from vegetative parts to the grain was significantly greater at higher seeding rates. Post-heading accumulations of dry matter and grain yield were also significantly greater in W and S than the un-pruned plants, although pruning reduced both dry matter remobilization and its contribution to grain yield. The possibility of reducing the proliferation of roots to increase yields at higher seeding rates and conserving the soil water at different growing stages in water-limited environments is discussed.  相似文献   

2.
Trees are the dominant species in agroforestry systems, profoundly affecting the performance of understory crops. Proximity to trees is a key factor in crop performance, but rather little information is available on the spatial distribution of yield and yield components of crop species under the influence of trees in agroforestry systems. Also, little information is available on how crop density may be exploited to optimize the yield in such systems. Here we studied the performance of cotton in jujube/cotton agroforestry. Field experiments were conducted in 2012 and 2013 in Hetian, Xinjiang, China. Cotton was grown at a row distance of 60 cm in three densities, 13.5, 18.0 and 22.5 plants m−2 in six m wide paths between tree lines in a jujube plantation. Plant density affected both cotton aboveground dry matter and yield significantly. The highest yield was attained at the intermediate density of 18.0 plants m−2 (20.0 plants m−2 corresponding in sole cotton), lower than the optimal density in sole cotton (25.0 plants m−2). Yield at the lower density was constrained by the low number of bolls per m2 as a direct consequence of the low density, whereas at the high plant density yield was constrained by a lower allocation of assimilates to cotton seed and lint, as a consequence of intraspecific and interspecific competitions. There were strong gradients in yield and yield components in relation to the distance from the tree rows. Leaf area and total dry matter of cotton in rows close to the tree lines were reduced, especially in the rows next to the trees. Moreover, biomass allocation to cotton fruits was reduced in these rows. Competitive influences from the trees on cotton performance extended two rows deep in a six-year old jujube stand, and even three rows deep in a seven-year old stand. Shading effects on cotton yield were compensated by increasing plant density as a result of greater boll numbers per unit ground area. Data from this study help guide the design of optimal plant density of cotton in jujube plantations and give insight in the spatial distribution and dynamics of competitive effects in agroforestry systems in general.  相似文献   

3.
We studied the effects of the rootstocks, Cleopatra mandarin and Carrizo citrange and of saline irrigation water (3, 15 and 30 mM NaCl) on yield, growth, fruit quality and leaf mineral composition of ‘Clemenules’ mandarin citrus trees. At the end of the experiment, ‘Clemenules’ trees grafted on Carrizo had higher yield efficiency (cumulative yield of three years per canopy volume) than trees grafted on Cleopatra, under both control and saline treatments. Fruit yield was reduced by the salinity due to a decrease in the number of fruit per tree but not fruit size. Trees on Cleopatra mandarin accumulated less Cl and more Na+ than those grafted on Carrizo. The leaf Na+ concentration reached its maximum value during the first year; however, the leaf Cl concentration continued increasing with time. For both rootstocks, leaf concentrations of N, P and K+ decreased with increasing salinity levels. Salinity reduced juice content and increased total soluble solids (TSS) in fruit from trees on Carrizo.  相似文献   

4.
Sustainable soil and crop management practices that reduce soil erosion and nitrogen (N) leaching, conserve soil organic matter, and optimize cotton and sorghum yields still remain a challenge. We examined the influence of three tillage practices (no-till, strip till and chisel till), four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secaele cereale L.)], vetch/rye biculture and winter weeds or no cover crop}, and three N fertilization rates (0, 60–65 and 120–130 kg N ha−1) on soil inorganic N content at the 0–30 cm depth and yields and N uptake of cotton (Gossypium hirsutum L.) and sorghum [Sorghum bicolor (L.) Moench]. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic, Plinthic Paleudults) from 1999 to 2002 in Georgia, USA. Nitrogen supplied by cover crops was greater with vetch and vetch/rye biculture than with rye and weeds. Soil inorganic N at the 0–10 and 10–30 cm depths increased with increasing N rate and were greater with vetch than with rye and weeds in April 2000 and 2002. Inorganic N at 0–10 cm was also greater with vetch than with rye in no-till, greater with vetch/rye than with rye and weeds in strip till, and greater with vetch than with rye and weeds in chisel till. In 2000, cotton lint yield and N uptake were greater in no-till with rye or 60 kg N ha−1 than in other treatments, but biomass (stems + leaves) yield and N uptake were greater with vetch and vetch/rye than with rye or weeds, and greater with 60 and 120 than with 0 kg N ha−1. In 2001, sorghum grain yield, biomass yield, and N uptake were greater in strip till and chisel till than in no-till, and greater in vetch and vetch/rye with or without N than in rye and weeds with 0 or 65 kg N ha−1. In 2002, cotton lint yield and N uptake were greater in chisel till, rye and weeds with 0 or 60 kg N ha−1 than in other treatments, but biomass N uptake was greater in vetch/rye with 60 kg N ha−1 than in rye and weeds with 0 or 60 kg N ha−1. Increased N supplied by hairy vetch or 120–130 kg N ha−1 increased soil N availability, sorghum grain yield, cotton and sorghum biomass yields, and N uptake but decreased cotton lint yield and lint N uptake compared with rye, weeds or 0 kg N ha−1. Cotton and sorghum yields and N uptake can be optimized and potentials for soil erosion and N leaching can be reduced by using conservation tillage, such as no-till or strip till, with vetch/rye biculture cover crop and 60–65 kg N ha−1. The results can be applied in regions where cover crops can be grown in the winter to reduce soil erosion and N leaching and where tillage intensity and N fertilization rates can be minimized to reduce the costs of energy requirement for tillage and N fertilization while optimizing crop production.  相似文献   

5.
 以叶片衰老快慢不同的两个棉花品系L21和L22为材料,研究了NaCl胁迫对棉花叶片衰老的影响及其相应的生理学机制。温室内水培棉苗,待第5片真叶展开20 d后用含125 mmol·L-1 NaCl的营养液处理棉苗,以不含NaCl的营养液处理为对照。结果显示,NaCl胁迫下L21和L22叶片中叶绿素含量和光合作用速率下降,叶片和根中的Na+含量上升、K+含量降低;NaCl胁迫还增加了棉株体内脱落酸(ABA)含量、降低了玉米素核苷(ZR)含量。表明K+含量降低以及ABA含量升高、ZR含量下降是NaCl胁迫促进棉花叶片衰老的重要原因。  相似文献   

6.
Cotton (Gossypium hirsutum L.) is the leading cash crop being grown across the globe including Pakistan. By the inclusion of insect resistant transgenic cotton (BT cotton), the cotton production has mounted many folds in Pakistan. BT cotton is mostly grown in Southern Punjab in cottonwheat cropping system of Pakistan; however there exists a time conflict among wheat harvest and BT cotton sowing in this system. Wheat is harvested during late April but the ideal sowing time of BT cotton is early-mid March indicating a time conflict of 46 weeks which is becoming the main concern leading to wheat exclusion from this system. Intercropping of BT cotton in standing wheat is one of the possible options to manage this overlapping period. This two year field study was, therefore, conducted at two locations (Multan, Vehari) to evaluate the economic feasibility of relay intercropping of BT cotton through different sowing methods in BT cottonwheat cropping system. BT cottonwheat cropping systems included in the study were: conventionally tilled cotton (CTC) on fallow land during early and late March, CTC during late April after harvest of flat sown wheat (FSW), bed sown wheat (BSW) + intercropped cotton during early and late March, and ridge sown wheat (RSW) + intercropped cotton during early and late March. Planting cotton in fallow land with conventional tillage during early March had more seed cotton yield; whereas planting in the same way during April after wheat harvest had minimum seed cotton yield. Likewise, FSW had more yield than ridge and bed sown wheat with intercropped BT cotton during early or late March. However, the system productivity in terms of net income, benefit: cost ratio and marginal rate of return of BSW + intercropped BT cotton during early March was the highest during both years at both locations. However, the system with sole crop of BT cotton sown on fallow land during late or early March was the least economical even than the system with CTC during late April after harvest of FSW. In conclusion, BSW + intercropped cotton during early March may be opted to manage the time conflict and improve the economic productivity of BT cottonwheat cropping system without wheat exclusion from the system.  相似文献   

7.
Crop tolerance to salinity is of high importance due to the extent and the constant increase in salt-affected areas in arid and semi-arid regions. Pearl millet (Pennistum glaucum), generally considered as fairly tolerant to salinity, could be an alternative crop option for salt affected areas. To explore the genotypic variability of vegetative-stage salinity tolerance, 100 pearl millet lines from ICRISAT breeding programs were first screened in a pot culture containing Alfisol with 250 mM NaCl solution as basal application. Subsequently, 31 lines including many parents of commercial hybrids, selected from the first trial were re-tested for confirmation of the initial salinity responses. Substantial variation for salinity tolerance was found on the basis of shoot biomass ratio (shoot biomass under salinity/ non-saline control) and 22 lines with a wide range of tolerance varying from highly tolerant to sensitive entries were identified. The performance of the genotypes was largely consistent across experiments. In a separate seed germination and seedling growth study, the seed germination was found to be adversely affected (more than 70% decrease) in more than half of the genotypes with 250 mM concentration of NaCl. The root growth ratio (root growth under salinity/control) as well as shoot growth ratio was measured at 6 DAS and this did not reflect the whole plant performance at 39 DAS. In general, the whole plant salinity tolerance was associated with reduced shoot N content, increased K+ and Na+ contents. The K+/Na+ and Ca++/Na+ ratios were also positively related to the tolerance but not as closely as the Na+ content. Therefore, it is concluded that a large scope exists for improving salt tolerance in pearl millet and that shoot Na+ concentration could be considered as a potential non-destructive selection criterion for vegetative-stage screening. The usefulness of this criterion for salinity response with respect to grain and stover yield remains to be investigated.  相似文献   

8.
Under irrigated Mediterranean conditions, no-tillage permanent bed planting (PB) is a promising agriculture system for improving soil protection and for soil carbon sequestration. However, soil compaction may increase with time up to levels that reduce crop yield. The aim of this study was to evaluate the mid-term effects of PB on soil compaction, root growth, crop yield and carbon sequestration compared with conventionally tilled bed planting (CB) and with a variant of PB that had partial subsoiling (DPB) in a Typic Xerofluvents soil (Soil Survey Staff, 2010) in southern Spain. Traffic was controlled during the whole study and beds, and furrows with (F + T) and without traffic (F  T), were spatially distinguished during measurements. Comparisons were made during a crop sequence of maize (Zea mays L.)—cotton (Gossypium hirsutum L.)—maize, corresponding to years 4–6 since trial establishment. After six years, soil compaction was higher in PB than in CB, particularly under the bed (44 and 27% higher in top 0.3- and 0.6-m soil layers, respectively). Around this time, maize root density at early grain filling was 17% lower in PB than in CB in the top 0.6-m layer. In DPB, the subsoiling operation was not effective in increasing root density. Nevertheless, root density appeared to maintain above-ground growth and yield in both PB and DPB compared to CB. Furthermore, at the end of the study, more soil organic carbon was stocked in PB than in CB and the difference increased significantly with a depth down to 0.5 m (5.7 Mg ha−1 increment for the top 0.5-m soil layer). Residues tended to accumulate on furrows, and this resulted in spatial and temporal differences in superficial soil organic carbon concentration (SOC) in the permanent planting systems. In PB, SOC in the top 0.05-m layer increased with time faster in furrows than on beds, and reached higher stable values (1.67 vs. 1.09% values, respectively). In CB, tillage homogenized the soil and reduced SOC in the top 0.05-m layer (average stable value of 0.96% on average for beds and furrows).  相似文献   

9.
Experiments were carried out to study the effects of N fertilizer rates and timing of application on the yield and grain quality of a rainfed emmer crop (Triticum dicoccum Shübler) under Mediterranean conditions. The following parameters were analyzed: hulled and net grain yield, hulled index, spikes m?2, spikelets per spike, kernels m?2, thousand-kernel weight, biomass, plant height, lodging, grain protein and ash content. In the first experiment, different N rates (30, 60 and 90 kg N ha?1 plus a control not fertilized) were split at three phenological stages (seeding 20%, tillering 40% and stem elongation 40%). In the second experiment, three N doses (30, 60 and 90 kg N ha?1) were applied to three crop stages (seeding, tillering and stem elongation). In the third experiment, the rate of 90 kg N ha?1 was distributed in different amounts (90-0-0, 0-90-0, 0-0-90, 45-45-0, 45-0-45, 0-45-45, 30-30-30) at the three mentioned crop stages. Increasing N rates resulted in higher hulled and net grain yield, as well as protein content. Fertilization (from 60 to 90 kg N ha?1) applied to tillering maximized hulled and net grain yield. Fertilization (90 kg N ha?1) applied to stem elongation gave the highest grain protein content (%) while splitting application (30 kg N ha?1 each) at three phenological stages maximized protein yield per hectare. Application of half or one-third of 90 kg N ha?1 to stem elongation improved grain protein content in comparison with applications at sowing, or at both sowing and tillering. The main factor determining higher yields with increasing N rates in this emmer crop was the number of kernels m?2. None of the yield components accounted for differences in grain yield when timing and splitting application were varied.  相似文献   

10.
Einkorn (Triticum monococcum L.), emmer (Triticum dicoccum Schübler) and spelt (T. spelta L.) are still cultivated in Italy. These three hulled wheat species are more commonly known as “Farro”. Little is known about agronomic practices that optimise the grain yield of these species.This study has been carried out to establish the appropriate seeding rate for einkorn, emmer and spelt which is grown in southern Italy (Apulia region), a typical Mediterranean environment, where durum wheat is principally cultivated. Two years of experimental field trials were conducted with three seeding rates (100, 150 and 200 viable seeds per square meter).Emmer had the highest hulled grain yield (3.54 t ha−1) followed by spelt (2.80 t ha−1) and einkorn (1.42 t ha−1). Emmer also had a higher kernel weight and was heading earlier than the other species. The bad performance of einkorn can be accountable to the excessive time to reach heading and the natural inclination of plants to lodge, factors that reduce the ability of plant to complete grain ripening, resulting in light and shrivelled kernels. The lower grain yield of spelt in comparison to emmer may be due to later heading.Emmer and spelt performed the best when they were sown at 200 seeds m−2 (3.85 and 3.09 t ha−1, respectively). In contrast, einkorn showed the highest grain yield (1.69 t ha−1) at the lowest seeding rate (100 seeds m−2). Further, additional experimentation is required to confirm this.These results indicate that emmer is the most appropriate hulled wheat species for cropping under southern Italy’s growing conditions, and provide further information about the use of these species in the marginal area preservation or when the cultivation of economically profitable crops is precludes by water deficiency and soil poorness.  相似文献   

11.
Root growth, nutrition and crop yield can be affected by soil chemical modifications caused by superficial limestone and phosphogypsum application in a no-till system. Using this approach, this study was conducted in southeastern Brazil, continuing an experiment that has been on-going since 2002 with the objective of evaluating the residual effects of the surface application of lime and phosphogypsum on the soil chemical characteristics and the root growth, nutrition and yield of soybean, black oat and sorghum in a dry winter region cultivated in 2008/2009 and 2009/2010. The experimental design was a randomized block with 4 replications. The treatments were applied in November 2004 and were as follows: original conditions, limestone application (2000 kg ha−1), phosphogypsum application (2100 kg ha−1), and limestone (2000 kg ha−1) + phosphogypsum (2100 kg ha−1) application. Superficial liming with or without phosphogypsum reduced the surface and subsurface soil acidity 5 years after application in the no-till system. The movement of Ca2+ and Mg2+ from the surface layer into the subsoil over time was evident. The phosphogypsum application associated with liming increased the Ca2+ levels throughout the soil profile. Liming maintained high levels of Mg2+ throughout the soil profile with or without phosphogypsum application. The organic matter content increased with liming with or without phosphogypsum, indicating that in the long term, these practices can increase the C accumulation. Phosphogypsum application had a residual effect on the SO4-S levels, and high sulphate concentrations were observed in the subsoil after 5 years. Superficial liming improved crop nutrition and, when associated with phosphogypsum, increased Ca absorption by soybean and sorghum, as reflected in the increased yields of these crops.  相似文献   

12.
Sequestration of C in arable soils has been considered as a potential mechanism to mitigate the elevated levels of atmospheric greenhouse gases. We evaluated impacts of conservation agriculture on change in total soil organic C (SOC) and relationship between C addition and storage in a sandy loam soil of the Indo-Gangetic Plains. Cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.) crops were grown during the first three years (2008–2011) and in the last year, maize (Zea mays L.), wheat and green gram (Vigna radiate L.) were cultivated. Results indicate the plots under zero tillage with bed planting (ZT-B) and zero tillage with flat planting (ZT-F) had nearly 28 and 26% higher total SOC stock compared with conventional tillage and bed planting (CT-B) (∼5.5 Mg ha−1) in the 0–5 cm soil layer. Plots under ZT-B and ZT-F contained higher total SOC stocks in the 0–5 and 5–15 cm soil layers than CT-B plots. Although there were significant variations in total SOC stocks in the surface layers, SOC stocks were similar under all treatments in the 0–30 cm soil layer. Residue management had no impact on SOC stocks in all layers, despite plots under cotton/maize + wheat residue (C/M+ W RES) contained ∼13% higher total SOC concentration than no residue treated plots (N RES; ∼7.6 g kg−1) in the 0–5 cm layer. Hence, tillage and residue management interaction effects were not significant. Although CT-B and ZT-F had similar maize aboveground biomass yields, CT-F treated plots yielded 16% less maize biomass than CT-B plots. However, both wheat and green gram (2012) yields were not affected by tillage. Plots under C/M + W RES had ∼17, 13, 13 and 32% higher mean cotton, maize, wheat and green gram aboveground biomass yields than N RES plots, yielding ∼16% higher estimated root (and rhizodeposition) C input in the 0–30 cm soil layer than N RES plots. About 9.3% of the gross C input contributed towards the increase in SOC content under the residue treated plots. However, ∼7.6 and 10.2% of the gross C input contributed towards the increase in SOC content under CT and ZT, respectively. Thus, both ZT and partial or full residue retention is recommended for higher soil C retention and sustained crop productivity.  相似文献   

13.
Soil salinity is a major constraint to the cultivation of horticultural crops. In the present study, potted trees of the pear variety Abbé Fetel, either with their own roots or grafted on different rootstocks, received irrigation water at two levels of salinity to: (i) evaluate the effect of the rootstock genotype on the vegetative growth; (ii) assess their differential ability to take up and partition sodium (Na+) and chloride (Cl); (iii) verify the effect of salinity on the uptake of major cations (potassium, calcium and magnesium). Irrigation water at 5.0 dS m−1 only slightly reduced vegetative growth regardless the genotype used as rootstock, suggesting a relative degree tolerance of pear (Pyrus communis) to soil salinity, at least in the short term. Quince (Cydonia oblonga) and pear rootstock genotypes had a contrasting effect on the uptake of chloride and sodium and differed regarding their ability to exclude these ions from the foliage. Quinces significantly increased their uptake of sodium and chloride when irrigated with saline water, while pear roots adopted an ion exclusion strategy to avoid accumulation of Na+ and Cl. Trees grafted on quinces accumulated a significant amount of Cl in the leaves, but were able to store most absorbed Na+ in their roots, a mechanism that prevented xylem loading and transport to the leaves. No effect of salinity on the uptake of potassium (K+), calcium (Ca2+) and magnesium (Mg2+) was recorded; however, leaf potassium concentration was markedly lower when roots belonged to quince than to pear. The ability of pear genotypes to take up K+ occurred in control trees and was unaffected by saline treatment and might be related to the strategy adopted by pears to exclude Na+ due to a high selectivity K+/Na+.  相似文献   

14.
Different preceding crops interact with almost all husbandry and have a major effect on crop yields. In order to quantify the yield response of winter wheat, a field trial with different preceding crop combinations (oilseed rape (OSR)–OSR–OSR–wheat–wheat–wheat), two sowing dates (mid/end of September, mid/end of October) and 16 mineral nitrogen (N) treatments (80–320 kg N ha−1) during 1993/1994–1998/1999, was carried out at Hohenschulen Experimental Station near Kiel in NW Germany. Single plant biomass, tiller numbers m−2, biomass m−2, grain yield and yield components at harvest were investigated. During the growing season, the incidence of root rot (Gaeumannomyces graminis) was observed. Additionally, a bioassay with Lemna minor was used to identify the presence of allelochemicals in the soil after different preceding crops.Averaged over all years and all other treatments, wheat following OSR achieved nearly 9.5 t ha−1, whereas the second wheat crop following wheat yielded about 0.9 t ha−1 and the third wheat crop following 2 years of wheat about 1.9 t ha−1 less compared with wheat after OSR. A delay of the sowing date only marginally decreased grain yield by 0.2 t ha−1. Nitrogen fertilization increased grain yield after all preceding crop combinations, but at different levels. Wheat grown after OSR reached its maximum yield of 9.7 t ha−1 with 210 kg N ha−1. The third wheat crop required a N amount of 270 kg N ha−1 to achieve its yield maximum of 8.0 t ha−1.Yield losses were mainly caused by a lower ear density and a reduced thousand grain weight. About 4 weeks after plant establishment, single wheat plants following OSR accumulated more biomass compared to plants grown after wheat. Plants from the third wheat crop were smallest. This range of the preceding crop combinations was similar at all sampling dates throughout the growing season.Root rot occurred only at a low level and was excluded to cause the yield losses. The Lemna bioassay suggested the presence of allelochemicals, which might have been one reason for the poor single plant development in autumn.An increased N fertilization compensated for the lower number of ears m−2 and partly reduced the yield losses due to the unfavorable preceding crop combination. However, it was not possible to completely compensate for the detrimental influences of an unfavorable preceding crop on the grain yield of the subsequent wheat crop.  相似文献   

15.
Maize (Zea mays L.) is susceptible to salinity but shows genotypic variation for salt tolerance. How maize genotypes with contrasting root morphological traits respond to salt stress remains unclear. This study assessed genotypic variation in salinity tolerance of 20 maize genotypes with contrasting root systems exposed to NaCl for 10 days (0, 50 mM or 100 mM NaCl, added in four increments every other day from 14 days after transplanting, DAT) in a semi-hydroponic phenotyping system in a temperature-controlled greenhouse. Considerable variation was observed for each of the 12 measured shoot and root traits among the 20 genotypes under NaCl treatments. Salt stress significantly decreased biomass production by up to 54% in shoots and 37% in roots compared with the non-saline control. The 20 genotypes were classified as salt-tolerant (8 genotypes), moderately tolerant (5) and salt-sensitive (7) genotypes based on the mean shoot dry weight ratio (the ratio of shoot dry weight at 100 mM NaCl and non-saline control) ± one standard error. The more salt-tolerant genotypes (such as Jindan52) had less reductions in growth, and lower shoot Na+ contents and higher shoot K+/Na+ ratios under salt stress. The declared salt tolerance was positively correlated with shoot height, shoot dry weight and primary root depth, and negatively correlated with shoot Na+ content at 100 mM NaCl. Primary root depth is critical for identifying salt responsiveness in maize plants and could be suggested as a selection criterion for screening salt tolerance of maize during early growth. The selected salt-tolerant genotypes have potentials for cultivation in saline soils and for developing high-yielding salt-tolerant maize hybrids in future breeding programmes.  相似文献   

16.
Four bread wheat genotypes differing in salt tolerance were selected to evaluate ion distribution and growth responses with increasing salinity. Salinity was applied when the leaf 4 was fully expanded. Sodium (Na+), potassium (K+) concentrations and K+/Na+ ratio in different tissues including root, leaf‐3 blade, flag leaf sheath and flag leaf blade at three salinity levels (0, 100 and 200 mm NaCl), and also the effects of salinity on growth rate, shoot biomass and grain yield were evaluated. Salt‐tolerant genotypes (Karchia‐65 and Roshan) showed higher growth rate, grain yield and shoot biomass than salt‐sensitive ones (Qods and Shiraz). Growth rate was reduced severely in the first period (1–10 days) after salt commencements. It seems after 20 days, the major effect of salinity on shoot biomass and grain yield was due to the osmotic effect of salt, not due to Na+‐specific effects within the plant. Grain yield loss in salt‐tolerant genotypes was due to the decline in grain size, but the grain yield loss in salt‐sensitive ones was due to decline in grain number. Salt‐tolerant genotypes sequestered higher amounts of Na+ concentration in root and flag leaf sheath and maintained lower Na+ concentration with higher K+/Na+ ratios in flag leaf blade. This ion partitioning may be contributing to the improved salt tolerance of genotypes.  相似文献   

17.
Sugar beet (Beta vulgaris cv. Patriot) plants were grown on field plots and in open-top chambers (OTCs) in two successive years. In the OTC treatments, plants were exposed to charcoal filtered air, unfiltered air or unfiltered air enriched with additional ozone (O3). Ozone exposure continued for almost 5 months and the 8-h average concentration was raised from 34 to 39 nL L−1 in the ambient air chambers to 62 nL L−1 in the ozone enriched chambers. In both years, the AOT40 exposure index in the ozone enriched chambers exceeded 30 μL L−1 h during the 5-month exposure period compared to 6.5 and 2.9 μL L−1 h in ambient air in 2003 and 2004, respectively. Visible symptoms in the form of small white necrotic flecks appeared in both seasons in the ozone enriched chambers. When the data for both years were analysed statistically, a significant reduction of root yield of 6% and a slight reduction of sugar content were detected. These changes resulted in an overall reduced sugar yield ha−1 of about 9%. Although the sensitivity of sugar beet to ozone is highly variety-dependent, in general this biennial crop appears less sensitive than annual crops such as wheat and potato. Ozone has limited effects on quality parameters in sugar beet, although an increase in α-amino-N content was observed, in agreement with the increased nitrogen content resulting from ozone exposure of wheat and potato.Enclosure within the OTCs increased aboveground biomass but decreased root yield (fresh biomass) and sugar content. These effects were most likely caused by a reduction of radiation by the chamber walls and annulus. The increased temperature in the chambers reduced yield quality by increasing mineral content.  相似文献   

18.
A pot experiment was conducted in a climate‐controlled greenhouse to investigate the growth, physiology and yield of potato in response to salinity stress under biochar amendment. It was hypothesized that addition of biochar may improve plant growth and yield by mitigating the negative effect of salinity through its high sorption ability. From tuber bulking to harvesting, the plants were exposed to three saline irrigations, that is 0, 25 and 50 mm NaCl solutions, respectively, and two levels of biochar (0 % and 5 % W/W) treatments. An adsorption study was also conducted to study the Na+ adsorption capability of biochar. Results indicated that biochar was capable to ameliorate salinity stress by adsorbing Na+. Increasing salinity level resulted in significant reductions of shoot biomass, root length and volume, tuber yield, photosynthetic rate (An), stomatal conductance (gs), midday leaf water potential, but increased abscisic acid (ABA) concentration in both leaf and xylem sap. At each salinity level, incorporation of biochar increased shoot biomass, root length and volume, tuber yield, An, gs, midday leaf water potential, and decreased ABA concentration in the leaf and xylem sap as compared with the respective non‐biochar control. Decreased Na+, Na+/K+ ratio and increased K+ content in xylem with biochar amendment also indicated its ameliorative effects on potato plants in response to salinity stress. The results suggested that incorporation of biochar might be a promising approach for enhancing crop productivity in salt‐affected soils.  相似文献   

19.
Carbohydrate production and reproductive structure development in cotton (Gossypium hirsutum) depends on light availability, a determinant of cotton yield. Light availability is decreased by cloud cover or self-shading when cotton plants are grown in dense populations. The objective of this study was to evaluate the effects of shading during cotton growth and its interactions with plant row spacings on yield and fiber quality. Three independent experiments were conducted as follows: in Paranapanema (23°39′S; 48°58′W), cotton was planted in November in row spacings of 0.45, 0.75 and 0.96 m; in Primavera do Leste (15°33′S; 54°11′W), planting was in January with at row spacings of 0.45 and 0.76 m; and in Chapadão do Céu (18°38′S; 52°40′W), cotton was planted in February in rows spaced at 0.45 and 0.90 m. Plants were exposed to shading during the phenological stages B1 (floral bud), F1 (early flowering), PF (peak flowering) and 3OB (fruit maturity). In addition, there was one treatment without shade. There were no interactions of crop spacing with shading. Increasing plant population and shading both decreased net photosynthetic rate. The number of bolls m−2 increased with higher plant populations only when planting was delayed, and were not affected by shading. When cotton was planted in November and January, higher yields were obtained at 0.75/0.76 m, but when planting was delayed to February, 0.45 m resulted in higher yields with no effect on fiber quality. Shading for eight or ten days decreases boll weight and yields, but do not affect fiber quality. Cotton yield is the most decreased when shading occurs during flowering. These results may be used to build management strategies to minimize shading effects by adjusting cotton sowing time and plant density, by selecting cultivars with increased shade tolerance and by choosing an adequate irrigation period to improve yield.  相似文献   

20.
A better understanding of the factors that contribute to low cassava yields in farmers’ fields is required to guide the formulation of cassava intensification programs. Using a boundary line approach, we analysed the contribution of soil fertility, pest and disease infestation and farmers’ cultivation practices to the cassava yield gap in Kongo Central (KC) and Tshopo (TSH) provinces of the Democratic Republic of Congo. Data were obtained by monitoring 42 and 37 farmer-managed cassava fields during two cropping cycles in KC and one cropping cycle in TSH, respectively. Each field was visited three times over the cassava growing period for the observations. Logistic model was fitted against the observed maximum cassava root yields and used to calculate the achievable yield per field and for individual factor. At field level, the factor that led to the lowest achievable yield (Yup(i)1) was considered as the dominant yield constraint. Cassava yield loss per field was expressed as the increase in the maximal root yield observed per province (Yatt- attainable yield) compared to Yup(i)1. Yatt was 21 and 24 t ha−1 in TSH and KC, respectively. With the cassava varieties that farmers are growing in the study areas, pests and diseases played a sparse role in the yield losses. Cassava mosaic was the only visible disease we observed and it was the dominant yield constraint in 3% and 12% of the fields in KC and TSH, respectively. The frequent yield constraints were suboptimal field management and low soil fertility. Cultivation practices and soil parameters led to Yup(i)1 in 47% and 50% of the fields in KC, and in 47% and 41% of those in TSH, respectively. Individual soil parameters were the yield constraint in few fields, suggesting that large-scale programs in terms of lime application or recommendation of the blanket fertilisers would result in sparse efficacy. In KC, yield losses caused by low soil fertility averaged 6.2 t ha−1 and were higher than those caused by suboptimal field management (5.5 t ha−1); almost nil for cassava mosaic disease (CMD). In TSH, yield losses caused by low soil fertility (4.5 t ha−1) were lower than those caused by suboptimal field management (6.5 t ha−1) and CMD (6.1 t ha−1). Irrespective of the constraint type, yield loss per field was up to 48% and 64% of the Yatt in KC and TSH, respectively. Scenario analysis indicated that the yield losses would remain at about two third of these levels while the dominant constraint was only overcome. We concluded that integrated and site-specific management practices are needed to close the cassava yield gap and maximize the efficacy of cassava intensification programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号