首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
棉花高光谱及其红边特征(Ⅰ)   总被引:6,自引:5,他引:6  
通过大田和室内试验,测定了2个品种的棉花冠层、完全展开倒1、3叶在不同时期的高光谱反射率及对应叶片的叶绿素、类胡萝卜素含量.结果表明随发育期推移,棉花冠层光谱反射率在可见光范围降低,在近红外区域增高;叶片背面光谱反射率略高于正面,透射率小于反射率;叶面积指数、鲜叶重和干叶重与冠层反射光谱变量ρ800/ρ550、ρ800/ρ680、ρ680/ρ570之间存在显著相关;叶片叶绿素和类胡萝卜素浓度与其反射光谱变量ρ680/ρ570、ρ673/ρ640、ρ680/ρ550、PSSRa、PSNDa、Rch之间也呈显著相关.  相似文献   

2.
棉花高光谱及其红边特征(Ⅱ)   总被引:6,自引:4,他引:6  
通过大田和室内试验,测定了2个棉花品种的冠层、完全展开倒1、3叶在不同时期的高光谱反射率及对应叶片的叶绿素、类胡萝卜素含量。结果表明:棉花冠层光谱红边具有“双峰”和“红边平台”现象,且红边位置λ_(red)位于695~720nm之间,红边幅值Dλ_(red)和红边面积S_(red)有“红移”和“蓝移”现象;叶面积指数、鲜叶重和干叶重与冠层光谱红边参数λ_(red)、Dλ(red)、S_(red)之间存在显著相关,叶片叶绿素和类胡萝卜素含量与其反射光谱的λ_(red)、Dλ(red)、S_(red)也有显著相关。  相似文献   

3.
不同水分条件下棉花光谱数据对冠层叶片温度的响应特征   总被引:2,自引:1,他引:1  
利用Fluke热像仪和ASD地物非成像高光谱仪,分别记录棉花新陆早33号、13号2个品种、4个水分处理、5个关键生育时期的冠层红外热图像和反射光谱数据;在红外热图像上提取棉花冠层受光叶片的温度,同时处理高光谱数据获得归一化植被指数(NDVI)、比值植被指数(RVI)、红光620 nm和近红外850 nm波段的反射率(ρ620,ρ850)。分析表明,棉花2个品种4个水分处理的冠层叶片温度(TL)在盛花期、盛花结铃期较高,在盛铃期达到最大值,在开花期和吐絮初期较低;棉花受到水分胁迫,冠层近红外波段光谱的反射率降低,红光波段的反射率升高,NDVI和RVI变小,TL升高;在充分灌溉条件下棉花近红外、红光波段的光谱反射率、NDVI和RVI及TL则与水分胁迫处理的表现相反。和620 nm和850 nm波段反射率与TL的线性相关比较,棉花NDVI和RVI与TL的线性相关性更强。研究表明,将红外热图像和高光谱遥感技术相结合,具有实时、非破坏性地监测棉花水分状况的潜力。  相似文献   

4.
利用水稻成熟期冠层高光谱数据进行估产研究   总被引:19,自引:0,他引:19  
通过大田小区试验,测定了2个品种、3个供氮水平处理的水稻抽穗后不同时期冠层的高光谱反射率、叶面积指数及理论产量和实际产量。结果表明,抽穗后水稻冠层光谱反射率随发育期推移在可见光范围逐渐增大,在近红外区域逐渐减小;理论产量、实际产量与差值植被指数R1200-R680、R990-R680、R800-R680、R1200-R550、R990-R550、R  相似文献   

5.
作物叶片含氮量是作物长势监测、产量及品质估测的重要依据,实时、无损地监测植株体内氮素营养状况有助于棉花氮肥的正确施用。本研究比较2种近地可见光传感器的光谱和颜色信息用于监测棉花氮素营养的能力, 确定MSI200成像光谱仪和数码相机监测棉花冠层叶片氮含量最佳的波段、光谱指数和颜色参数并建立估测模型。结果表明,在可见光波段,冠层反射率随着冠层叶片氮素含量的增加而降低,且叶片含氮量的光谱敏感波段主要位于绿光和红光区域;与棉花冠层叶片含氮量的拟合效果最好的2种传感器的光谱指数为差值指数DI(R580, R680)和G–R,而颜色参数则分别为b*和H,同一传感器以光谱指数的拟合效果优于颜色参数,不同传感器以MSI200数据的拟合效果优于数码相机;利用独立试验资料检验所建模型的估测性能表明,差值指数对棉花冠层叶片氮素的预测能力优于比值指数和归一化差值指数,DI(R580, R680)和G–R所建模型的估测精度最高,分别为0.8131和0.7636。因此,利用数码相机和MSI200型成像光谱仪可以定量估测棉花冠层叶片氮素营养状况。  相似文献   

6.
棉花功能叶片色素含量与高光谱参数的相关性研究   总被引:2,自引:0,他引:2  
叶片色素状况是评价植株光合能力、监测生长状况和预测产量潜力的重要指标,高光谱遥感技术为快速无损监测作物叶片色素提供了有效手段.本研究以4个棉花品种在3个施氮水平下的2年田间试验为基础,通过测定棉花(Gossypium hirsutum)功能叶片的高光谱反射率及对应的色素(叶绿素a、叶绿素b、叶绿素a b、类胡萝卜素)含量,定量分析了叶片高光谱参数与色素含量之间的相关关系.结果表明,与棉花功能叶片各色素指标相关性比较好的高光谱波段主要分布在500~700 nm;由敏感波段构建的光谱指数与各色素指标的相关性均在0.50以上;且红边最小值(Lo)可以作为共同的高光谱指数来估测不同棉花品种不同氮素水平下功能叶片的叶绿素总量(组合品种的R2为0.67).因此,通过高光谱参数来估算棉花功能叶片色素含量是可行的.  相似文献   

7.
小麦叶片叶绿素荧光参数与反射光谱特征的关系   总被引:4,自引:0,他引:4  
以宁麦9号(低蛋白质含量)、淮麦20(中蛋白质含量)和豫麦34(高蛋白质含量)为试材,设0~300 kg hm-2不同施氮水平,经2003—2004年和2004—2005年田间试验,对小麦顶部4张叶片叶绿素荧光参数和反射光谱特征的变化规律及其相互关系进行了分析。结果表明,小麦叶片叶绿素荧光参数Fv/Fm和Fv/Fo随施氮水平提高呈上升趋势,同时叶片光谱反射率在不同施氮水平、叶位和生育期均有明显差异。小麦植株顶1叶和顶2叶反射光谱在可见光区(520~680 nm)和近红外区(750~850 nm)与叶绿素荧光参数稳定相关。顶端2张叶片的植被指数DVI(750, 550)、DVI(735, 690)和TVI(750, 670, 550)与荧光参数Fo、Fm、Fv、Fv/Fm、Fv/Fo、Fs、Fm’、Fo’、Fv’、Fv’/Fm’的相关性均较好,其中DVI(750, 550)的相关性最好,且回归系数在不同品种和不同生育期之间没有显著差异。表明利用小麦叶片反射光谱监测其叶绿素荧光参数是可行的。  相似文献   

8.
棉花冠层高光谱指数与叶片氮积累量的定量关系   总被引:3,自引:0,他引:3  
利用冠层高光谱反射率及演变的多种高光谱植被指数(VI),分析了不同施氮水平下不同棉花品种叶片氮积累量与冠层反射光谱的定量关系,建立了棉花叶片氮积累量的敏感光谱参数及预测方程。结果显示,棉花叶片氮积累量和冠层高光谱反射率均随不同施氮水平显著变化;棉花叶片氮含量的敏感光谱波段为600~700 nm的红谷波段和750~900 nm的近红外波段,叶片氮积累量与光谱指数NVD672有密切的定量关系,且不同品种可以用统一的方程来描述,从而为棉花氮素营养的监测诊断与精确施肥提供了技术支持。  相似文献   

9.
基于吸收、透射和反射光谱预测水稻叶绿素含量研究   总被引:1,自引:0,他引:1  
选择基于吸收率和透射率的叶绿素含量定量反演波段组合,构建叶绿素含量光谱估测模型寻找基于吸收、透射和反射光谱预测叶绿素含量的波段。以3个水稻品种临稻11,圣稻13和阳光200为材料,进行田间实验。比较水稻叶片吸收、反射及透射光谱曲线和一阶导数光谱曲线,发现440、480、630nm和681nm为叶绿素吸收峰的实际发生波段位置,其中630nm波段处的叶片光谱吸收率(A)、透射率(T)和反射率(R)之间相关性最好。比较三者之间的相关性,吸收率与透射率的相关性最强。630nm波段处的叶片光谱吸收率、透射率和反射率与叶绿素含量之间的相关性均达到极显著水平。回归分析表明基于440、480nm和681nm3个波段光谱吸收率线性模型,440、480nm和630nm3个波段光谱透射率线性模型估测叶绿素a含量,480、630nm和681nm3个波段光谱透射率线性模型估测叶绿素b含量,与单独使用630nm光谱变量估测叶绿素含量比较,在4个生育期估测精度均有显著提高,其中以叶绿素a和叶绿素总量的估测效果最好。  相似文献   

10.
棉花叶绿素密度和叶片氮积累量的高光谱监测研究   总被引:4,自引:0,他引:4  
利用非成像高光谱仪,获取棉花不同品种、不同密度冠层关键生育时期的反射光谱数据,应用光谱多元统计分析技术,研究表明,棉花冠层叶绿素密度(CH.D)和叶片氮积累量(LNA)分别在反射光谱762 nm和763 nm处的相关系数达最大值(RCH.D= 0.8845**和RLNA= 0.7870**,n = 47);而一阶微分光谱数据对CH.D、LNA最敏感的波段均发生在750 nm处(RCH.D= 0.9098**和RLNA = 0.9164**,n = 47);采用47个建模样本的一阶微分光谱750 nm处的数值与棉花冠层CH.D建立线性相关模型方程,估算47个检验样本的棉花冠层CH.D,再根据CH.D与LNA建立的线性相关方程估算检验样本的LNA,47个检验样本的实测LNA与估测LNA极显著线性相关(R = 0.8982**,n = 94),模型方程的估算精度达86.3%,实测值与估算值的RMSE = 1.0155,相对误差为0.1380。说明基于高光谱数据的棉花冠层叶绿素密度的遥感估测,可以间接用于棉花冠层叶片氮积累量的监测研究。  相似文献   

11.
基于高光谱数据提取棉花冠层特征信息的研究   总被引:5,自引:4,他引:1  
 采用ASD Field Spec Pro VNIR 2500型高光谱仪获取了不同生育时期棉花冠层的高光谱遥感数据,通过光谱分析技术研究了棉花冠层结构与其光谱数据之间的关系。结果表明,不同品种、不同密度、不同配置方式及不同生长状况间棉花的冠层光谱存在着较明显的差异,棉花冠层光谱反射率与其叶绿素含量、叶面积和生物量及生长发育阶段、健康状况和物候现象等因素密切相关。可见,运用高光谱遥感技术快速、有效、非接触、非破坏性地获取棉花冠层信息,对解释、预测和设计理想棉花群体意义重大,同时为新疆精准种植棉花和科学调控水肥提供了科学依据。  相似文献   

12.
利用不同小麦品种在不同施氮水平下的3年田间试验数据,研究了小麦叶片氮积累量与冠层反射光谱间的定量关系。结果显示,不同试验中拔节后叶片氮积累量均随施氮水平呈上升趋势,同时冠层光谱反射率在不同施氮水平下存在明显差异。对于低、中、高蛋白质含量的品种类型,近红外区域若干相邻波段和可见光波段组成的比值植被指数与单位土地面积上叶片氮素积累量的相关关系均表现较好,因此可用760、810、870、950和1 100 nm反射率的平均值与660 nm组成的比值植被指数对不同蛋白质类型小麦品种的叶片氮素积累量进行定量监测,但回归方程的斜率在不同类型品种之间存在显著差异。本研究确立的小麦叶片氮积累量与冠层反射光谱的定量关系可用于不同的小麦品种、生育时期和施氮水平,为小麦氮素营养的监测诊断与精确施肥等提供理论依据和技术途径。  相似文献   

13.
小麦叶片氮积累量与冠层反射光谱指数的定量关系   总被引:14,自引:3,他引:14  
利用不同小麦品种在不同施氮水平下的3年田间试验数据,研究了小麦叶片氮积累量与冠层反射光谱间的定量关系。结果显示,不同试验中拔节后叶片氮积累量均随施氮水平呈上升趋势,同时冠层光谱反射率在不同施氮水平下存在明显差异。对于低、中、高蛋白质含量的品种类型,近红外区域若干相邻波段和可见光波段组成的比值植被指数与单位土地面积上叶片氮素积累量的相关关系均表现较好,因此可用760、810、870、950和1100nm反射率的平均值与660nm组成的比值植被指数对不同蛋白质类型小麦品种的叶片氮素积累量进行定量监测,但回归方程的斜率在不同类型品种之间存在显著差异。本研究确立的小麦叶片氮积累量与冠层反射光谱的定量关系可用于不同的小麦品种、生育时期和施氮水平,为小麦氮素营养的监测诊断与精确施肥等提供理论依据和技术途径。  相似文献   

14.
以冠层反射光谱监测水稻叶片氮积累量的研究   总被引:10,自引:0,他引:10  
周冬琴  朱艳  田永超  姚霞  曹卫星 《作物学报》2006,32(9):1316-1322
作物氮素状况是评价作物长势、估测产量与品质的重要参考指标,对作物氮素精确诊断与管理具有重要意义。本文以不同施氮水平下的4年田间试验为基础,研究了水稻叶片氮积累量与冠层反射光谱的定量关系。结果显示,在冠层单波段反射率中,460 nm、510 nm及760~1 100 nm的光谱反射率与冠层叶片氮积累量的相关性较好;近红外波段(  相似文献   

15.
利用ASD地物光谱仪,获取北疆棉花冠层关键生育时期的高光谱数据,应用一阶微分光谱,衍生出基于光谱位置变量的分析方法,以红边积分面积(SDr)为自变量,冠层全氮(TN)含量为因变量,做相关分析,结果表明:红边积分面积变量与冠层TN含量呈显著的相关性,相关系数是0.7394(n=40),利用构建的相关模型可以较为精确地估测棉花两个品种新陆早6号与8号冠层叶片的全氮含量,均方差(RMSE)分别为0.3859和0.4272。研究认为面积变量具有预测棉花冠层全氮含量的应用潜力。  相似文献   

16.
棉花植株水分含量的高光谱监测模型研究   总被引:5,自引:2,他引:3  
精确灌溉对无损、快速的水分监测技术有迫切需求。研究棉花冠层高光谱参数与水分的定量关系并建立水分估测模型,以实现棉花水分及时、准确监测。通过2年试验,测定棉花冠层高光谱及植株水分,根据光谱参数与植株含水量的相关关系,建立了植株含水量监测模型。结果表明:棉株含水量与叶片含水量在一定范围内随灌溉量增减而增减,并能区分棉花干旱程度;棉株及叶片含水量与冠层460~514 nm、605~698 nm、1451~1576 nm和1960~2457 nm反射率极显著负相关,与727~1345 nm反射率极显著正相关,且棉株的相关性好于叶片含水量。所选作物水分指数、归一化差值水分指数1、归一化差值水分指数2、水分胁迫指数1、水分胁迫指数2、水分波段指数、水分指数与归一化差值植被指数之比均与棉株及叶片含水量极显著相关;构建了棉株含水量和叶片含水量的最佳监测模型;所建模型精度能满足大田生产对棉花水分监测的要求。  相似文献   

17.
【目的】利用高光谱数据对新疆北方地区不同生育时期滴灌棉花冠层叶片叶绿素含量进行估测,建立生长时序的叶绿素含量估算模型。【方法】以新陆早45号为试验材料,测定不同施氮水平和生育时期棉花冠层叶片叶绿素含量及对应的光谱反射率,分析了12种指数与叶绿素含量的关系,构建了滴灌棉花冠层叶片叶绿素含量的估测模型。【结果】棉花的4个生育时期(现蕾期、盛蕾期、花铃期和吐絮期)中冠层叶片叶绿素含量与Vogelmann红边指数1的相关系数都高,分别是0.944、0.907、0.895、0.930;采用多元回归方法建立的模型精度高于单指数线性模型,其决定系数都大于0.8,且均方根误差(RMSE)都较小。现蕾期模型(y=82.509x_1+89.937x_2-94.438)精度最好。【结论】针对不同生育时期建立的模型均可对棉花冠层叶片叶绿素含量进行估测,其中现蕾期模型监测效果最好。  相似文献   

18.
基于光谱参数的棉花叶面积指数监测和敏感性分析   总被引:1,自引:1,他引:0  
研究棉花冠层光谱参数对不同叶面积指数的响应,建立棉花叶面积指数光谱参数最佳估测模型,并对所选光谱参数进行敏感性分析.利用高光谱仪测定不同时期不同叶面积指数条件下的棉花冠层光谱反射率.结果表明,694 nm和1099nm分别为可见光和近红外波段区域内与叶面积指数相关性最好的波段,并用于改进前人所建立的光谱参数;宽范围动态...  相似文献   

19.
高光谱数据与棉花叶绿素含量和叶绿素密度的相关分析   总被引:9,自引:5,他引:4  
 通过获取棉花不同品种、不同种植密度单叶和冠层关键生育时期的反射光谱,与其相应的单叶叶绿素含量(CHL.C,下同)和冠层叶绿素密度(CH.D,下同)进行多元统计的逐步相关分析。结果表明,棉花冠层CH.D在其反射光谱762 nm波段处的相关系数达最大值(RCH.D=0.8134**,n=94);对于一阶微分光谱,单叶CHL.C和冠层CH.D的敏感波段均发生在750 nm波段处,基于750 nm波段的微分数值,建立了棉花CHL.C和CH.D线性相关模型(RCHL.C=0.7382**,RMSE=0.1831,n=66;RCH.D =0.9027**,RMSE=0.3078,n=94),为利用高光谱遥感技术精确提取反映棉花生长状况的叶绿素信息提供了依据。  相似文献   

20.
测试了棉花2个品种4水平种植密度的4个关键生育时期冠层反射光谱,应用微分技术处理棉花冠层反射光谱,提取了红边(680~750nm)波段范围的最大一阶微分值(Dr)和红边面积(SDr)参数。分析了棉花冠层红边参数在不同生育期的变化特征和棉花吐絮期的两种生长类型的冠层红边状况,表明红边位置可以指示它们的氮素状况。以新陆早8号的SDr为自变量与对应的LNA为因变量进行相关分析,SDr与冠层LNA达1%极显著相关(R=0.9186**,n=32),利用其构建的模型方程估算新陆早6号的LNA,实测LNA和估测LNA的估计标准差为0.8909g/m2,估算精度为88.1%(R=0.9277**,n=32),说明采用高光谱提取的红边参数信息是无损实时、快捷评价棉花氮素状况的有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号