首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 207 毫秒
1.
牛粪水酸化贮存过程中氮形态转化的特性研究   总被引:3,自引:1,他引:3  
近年来,随着畜禽养殖规模化的快速发展,养殖粪水的处理和利用已成为养殖业健康发展的难点和热点,粪水酸化技术是通过向粪水中添加酸化剂以降低氨气排放,减少粪水贮存中氮素损失的技术,目前此技术已经在丹麦等国推广应用,但中国对此技术的研究尚未起步,为探究粪水酸化固持氮素的效果,该研究以硫酸和明矾为粪水酸化剂,以固液分离前后奶牛粪水为处理对象,通过向粪水中添加酸化剂降低粪水pH值至6.0,分析粪水贮存中氨气排放、氮素转化以及粪大肠菌群数等指标,探索粪水酸化贮存过程氮形态转化机理。研究表明:向养殖粪水中添加酸化剂可降低6.3%~11.1%的总氮损失,能够降低粪水贮存初期中氨气的排放,同时有效抑制了奶牛粪水中粪大肠菌群的活性,使其更易达到无害化处理。酸化剂的加入一方面抑制粪水中微生物作用下的有机氮向无机氮素的转化,提高粪水贮存中有机氮的含量,减少铵态氮的产生量,另一方面酸化剂与粪水中的铵态氮结合生成稳定的铵盐,抑制了粪水中铵态氮向氨气转化的化学平衡,降低了粪水中因氨气排放导致的总氮损失,从而达到减少粪水贮存中氮素损失。  相似文献   

2.
陈广银  吴佩  董金竹  王恩慧  郑嘉伟 《土壤》2023,55(3):587-595
为减少猪粪水贮存过程中氮素损失,提高还田安全性,采用酸化贮存技术,以磷酸为酸化剂,比较了不同初始pH对猪粪水酸化贮存过程及氮素损失的影响。结果表明:试验用猪粪水中重金属浓度大小顺序为:Cu>Pb>Zn>Cd>As,贮存后重金属浓度均降低,符合《农用沼液:GB/T 40750-2021》标准,但贮存180 d后猪粪水氮素损失率达68.55%,贮存后猪粪水中氮素以氨氮为主,占比达51.73%;酸化pH与酸化剂用量的相关性公式为:y=-3.3113x + 22.999,R2=0.985;酸化贮存大幅减少了猪粪水氮素损失,损失率较CK降低了5.98-62.77个百分点,且贮存后氨氮占总氮占比大幅提高24个百分点以上,保氮效果与pH呈反比;磷酸酸化提高了猪粪水总磷和水溶性磷浓度,增加幅度与磷酸用量呈正比;酸化贮存后猪粪水EC、Cd和Pb浓度偏高,抑制根和茎生长,其负面效应与贮存pH呈反比;酸化贮存降低了猪粪水Cu浓度,Cu浓度与pH呈正比,对As和Zn的作用无明显规律。综上所述,建议将猪粪水pH调至6.0后贮存,酸化剂成本为13.89元·吨-1。  相似文献   

3.
连续施用酸化粪水对土壤养分淋溶及重金属累积的影响   总被引:1,自引:1,他引:0  
为探索连续施用酸化粪水对土壤养分淋溶及重金属累积情况的影响,采用新鲜粪水和酸化粪水,开展土柱淋溶试验。试验分别设置1个对照组、新鲜粪水和3个不同pH值(6.5、6.0和5.5)的酸化粪水,每个处理分别设置6次粪水淋溶。结果表明:施用新鲜粪水和酸化粪水均能增加土壤养分,施用新鲜粪水、pH值6.5、pH值6.0和pH值5.5的粪水后土壤总养分(N、P、K)的增长幅度分别为1%~40%、15%~66%和5%~21%,重金属Cu和Zn的增长幅度为4%~48%和4%~11%,重金属Cd和Pb的增长幅度为2%~14%和1%~18%;连续施用酸化粪水会使土壤pH降低、土壤电导率值升高以及土壤重金属不断累积,这也是导致土壤环境遭到破坏的风险因素,实际应用过程中应特别注意;建议每两季作物施用一次pH值为6.5的粪水;每三季作物施用一次pH值为6.0的粪水;每四季作物施用一次pH值为5.5的粪水。该研究通过对比分析连续施用新鲜粪水和不同pH值的酸化粪水后土壤养分和重金属浓度的变化,探讨了酸化粪水的还田效果,为连续施用酸化粪水的研究提供技术支撑。  相似文献   

4.
不同酸化剂对石灰性土壤pH值、磷有效性的影响   总被引:3,自引:1,他引:2       下载免费PDF全文
以滴灌方式通过少量多次向土壤施用酸化剂,研究不同酸化剂对石灰性土壤的酸化效果及对玉米磷吸收的影响,以期为提高石灰性土壤的磷素有效性提供理论依据。试验设置对照及两种酸化剂(磷酸脲,硫酸铵+氯甲基吡啶),酸化剂投入量相当于P2O5=60或120 kg/hm~2的等价酸,共计5个处理。施用酸化剂显著降低局部土壤pH值,磷酸脲的作用最佳,土壤pH值最大降幅为0.11个单位,同时也显著提高土壤有效磷含量;在等养分投入和管理水平下,施用酸化剂能增加玉米植株的生物量,提高植株的磷素累积量,且与对照相比,120 kg/hm~2的硫酸铵+氯甲基吡啶处理的玉米产量提高了8.3%。滴灌条件硫酸铵+氯甲基吡啶的酸化效果优于磷酸脲,且高酸化剂量土壤酸化强度较大。滴灌条件下施用酸化剂或酸性肥料是提高石灰性土壤养分有效性和作物增产的一种有效方法。  相似文献   

5.
滴灌下酸性物质对石灰性土壤磷有效性及作物吸收的影响   总被引:7,自引:0,他引:7  
大田滴灌条件下研究了少量多次施用硫酸和磷酸对石灰性土壤pH、磷有效性以及改善作物磷营养的效果。结果表明,施用磷酸和硫酸降低局部土壤pH,且随施用次数的增加,酸化效果趋于加强,在第5次施用酸化剂时下降到最大。水平方向上,滴灌带附近pH降低最大,随距离增加酸化效果减弱,pH最大降幅0.26个单位。垂直方向上,0~10 cm酸化最为强烈,pH最大降幅0.29个单位。pH降低提高了土壤磷的有效性,0~20 cm土层深度酸化剂处理有效磷含量均显著高于对照(P0.05),且硫酸与磷酸酸化效果接近。相同养分用量投入和管理水平下,酸化剂处理棉花吸磷量增加17.6%~23.4%,皮棉产量提高9.9%~11.4%。滴灌条件下施用酸化剂提高石灰性土壤养分有效性是一种可行的提高养分资源利用效率的方法。  相似文献   

6.
为摸清东北地区畜禽粪污处理技术与资源化利用模式应用现状,该研究采用问卷调研与现场评估相结合的方式,对黑龙江、吉林和辽宁3省272个规模化养殖场进行了调研,分析了养殖畜种与存栏量、粪污产生量、粪污处理技术、粪污处理设施设备以及粪肥还田参数等数据,总结了东北地区畜禽粪污处理技术应用现状和资源化利用模式特点。结果表明:东北地区主要粪污收集工艺为干清粪,占比达94.35%。固体粪便以堆沤肥工艺为主,占所调研养殖场的86.93%,各畜种粪便存储设施面积符合畜禽规模化养殖场粪污资源化利用设施建设规范要求。液体粪污主要处理方式为粪水贮存,占所调研养殖场的68.18%;奶牛养殖场粪水贮存设施小于建设规范要求。东北地区粪肥还田主要种植作物为玉米,占所有种植作物的78.13%,现有配套土地面积普遍低于畜禽粪污土地承载力测算需求面积。固体粪肥主要施肥方式为人工施肥,占比达88.00%;液体粪肥主要施肥方式为漫灌和喷灌,占比分别为54.17%和37.50%。整体来看,东北地区粪污处理与资源化利用主要技术模式为“干清粪+粪便堆沤+粪水贮存”。研究结果可为东北地区粪污处理和资源化利用模式推广和政策制定提供参考。  相似文献   

7.
规模化养猪场粪污全量收集及贮存工艺设计   总被引:3,自引:2,他引:3  
基于全量收集的粪污贮存技术具有粪尿收集方便、运行成本低廉和养分利用率高等特点,在欧美等发达国家得到了普遍应用,是一种适合在中国华北、西北等地区和土地匹配较充足的区域进行推广的粪污处理与还田利用技术。文章以规模化养猪场尿泡粪全量贮存技术为研究对象,分析了尿泡粪收集量、贮存工艺控制参数、贮存设施设计和投资运行成本等内容,旨在为该技术的推广应用提供参考。结果表明:每头生猪整个饲养周期内尿泡粪收集量为0.70 m~3;粪污贮存设施分为舍内贮存池和舍外贮存罐2种,粪污贮存方法可采取舍内贮存、舍外贮存和舍内结合舍外贮存3种。粪污pH值酸化至5.5~6.5,氨排放量最高可减少80%;粪肥还田前一般要求存储时间为6个月。以存栏5000头规模养猪场为例,舍内贮存池所需容积为6 600 m~3,投资660万元;舍外贮存罐所需容积为4 118 m~3,投资206万元;舍内结合舍外贮存设施所需容积为8 214 m~3,投资651万元;粪污处理成本为3.83万元/a,施肥成本为10.8万元/a;全部粪肥还田可满足133 hm~2农田用肥,节省化肥6.0万元/a,该研究可为粪污贮存及利用提供参考。  相似文献   

8.
粪肥中的氮素在贮存和施用的过程中主要以氨的形式挥发。粪肥的管理不当 ,会对土壤、水、大气和作物造成污染 ,土壤中氮素水平的保持已引起人们的关注。为此加拿大学者B .D .Lambert等人对天然牧场和人工牧场进行施用液态猪粪肥 ,研究其施用量、施肥方式等对氨挥发性的影响。研究表明 :不同处理间氨的损失随施肥量的增加而增加 ,且人工牧场的氨损失量大于天然牧场。相对表土条施而言 ,喷肥后翻耕有利于减少氨的挥发。可见 ,施肥后翻耕是有效减少氨挥发的措施  相似文献   

9.
养殖粪水长期贮存过程理化特性变化规律   总被引:1,自引:2,他引:1  
目前中国中小规模畜禽养殖场主要采用自然贮存后还田的形式处理养殖粪水,受场地制约,养殖粪水贮存时间通常仅有1~2个月,之后便直接还田利用,贮存后的粪水理化特性变化尚不清楚,是否适宜直接还田尚需研究。该研究以猪粪水和牛粪水为研究对象,重点分析粪水在长期贮存中粪大肠菌群、电导率(Electrical Conductance,EC)以及化学需氧量(Chemical Oxygen Demand,COD)的变化,分析粪水最佳贮存期及还田利用方式,以期为粪水资源化及安全还田提供参考。结果表明,粪水经自然贮存6个月,铵态氮损失达68%以上,不仅引起环境污染,且降低了养分;贮存后粪水基本可达到无害化要求,但pH值、EC值以及COD浓度仍然偏高,还田前应制定合理的粪水资源化利用方案;固液分离可以有效降低粪水中的COD浓度和EC值,促进粪水无害化进程。该研究为中国畜禽养殖粪水资源化用探索了新的技术路径。  相似文献   

10.
粪水酸化储存还田应用效果   总被引:2,自引:1,他引:2  
为探索酸化储存粪水对农田的施用效果,采用浓硫酸(H_2SO_4)酸化前后的粪水和长期储存前后粪水,开展盆栽试验研究酸化储存粪水对土壤养分和作物产量的影响。试验分别设置2个对照组:储存前和储存后的粪水,H_2SO_4酸化前和酸化后的粪水,每个处理分别设置4组施加量水平(5%、25%、50%和100%稀释比例的粪水)。试验结果表明:对于养殖粪水还田,应严格控制粪水还田比例,不宜施加浓度过高的粪水,宜控制在25%~50%施加量。粪水储存有利于土壤总氮(Total Nitrogen, TN)和总磷(Total Phosphate,TP)的固持,储存后土壤总养分(总氮、总磷和总钾(Total Potassium,TK))增加了11.32%~73.16%,SMS(储存60 d的粪水)(100%)处理产量提高了21.22%;粪水经过H_2SO_4酸化处理后,对土壤总养分影响变化较大,TN、TP和TK部分处理呈增加的趋势,HMS(25%)处理产量显著提高了27.94%;在H_2SO_4酸化的基础上储存粪水,土壤TN含量增加十分显著(P0.05),酸化与储存联合处理减少了粪水TN的损失,对于土壤速效养分的增加有促进作用,尤其对速效N的影响较显著(P0.05),SHMS(粪水+H_2SO_4储存60 d)(25%)处理产量提高了13.63%。该研究通过对比分析新鲜粪水、储存粪水、酸化粪水和酸化储存粪水的特性,探讨了畜禽养殖场粪水经酸化储存后的还田应用效果,为粪水还田提供技术支撑。  相似文献   

11.
Acidification of animal slurry is recommended in order to reduce NH3 emissions, but relatively little is known about the effect of such treatment on C and N dynamics during acidification, storage, and after soil application. A laboratory study was performed, and the CO2 emissions from a high–dry matter slurry (HDM), a low–dry matter slurry (LDM), and the same respective acidified slurries (AHDM and ALDM) were followed during a storage period and after soil incorporation. The N‐mineralization and nitrification processes, as well as microbial‐biomass activity were also estimated in soil receiving both the acidified and nonacidified materials. We observed a strong CO2 emission during the acidification process, and acidification led to a small increase in CO2 emissions (≈ 11%) during storage of AHDM relative to HDM. No effect of LDM acidification on CO2 emissions during storage was observed. About 30% of C released during storage of AHDM was inorganic C, and for ALDM the C release was exclusively inorganic. Soil application of AHDM and ALDM led to a decrease in soil respiration, nitrification, and microbial‐biomass‐C values, relative to soil application of HDM and LDM, respectively. Furthermore, it was shown that this effect was more pronounced in ALDM‐ than AHDM‐treated soil. Considering both steps (storage and soil application), acidification led to a significant decrease of C losses and lower C losses were observed from LDM slurries than from HDM slurries.  相似文献   

12.
探讨了在等氮量供应下,猪粪厌氧发酵物(沼液)及有氧发酵物(堆肥)氮源对甘蓝生长及土壤养分的影响,结果表明:在等氮量供应的情况下,施用猪粪沼液不仅可以替代化肥为作物提供生长所必需的氮素,而且提高了养分的利用效率,对甘蓝的增产效果显著;而施用猪粪堆肥处理的甘蓝产量较低,但是施用猪粪堆肥可以提高土壤有机质和土壤p H值,减少施用化肥带来的土壤酸化危害;在等氮量供应的情况下,单施猪粪堆肥处理的土壤有效磷、速效钾含量最高。  相似文献   

13.
添加葡萄糖对红壤农田肥料氮转化及其酸化的影响   总被引:1,自引:0,他引:1  
采用室内培养实验,初步研究了外加葡萄糖对红壤肥料氮素转化及其酸化作用的影响,其中葡萄糖添加量充足,为8 g·kg–1干土,氮肥以(NH4)2SO4和KNO3为例。结果表明,在对照、单施(NH4)2SO4或KNO3处理中,土壤中氮转化过程主要以有机氮净矿化和铵态氮净硝化为主,这主要是由于红壤可利用碳源较少。而外加足够葡萄糖碳源可快速(2 d内)促进土壤及其100 mg·kg–1氮肥中的NH4+-N和NO3--N几乎全部被微生物同化,30 d培养期间微生物同化促进28%~50%的肥料氮迅速转化为固相有机态氮。单施(NH4)2SO4或KNO3主要通过硝化作用和盐效应降低土壤pH,但微生物对NH4+-N的生物固定可抑制其硝化导致的酸化作用,而微生物对NO3--N的生物固定可提高土壤pH高达0.78个单位。因此,添加葡萄糖等碳源可促进农田土壤中NH4+-N和NO3--N的微生物同化,缓解氮肥引起的土壤酸化作用。研究结果对提高农田土壤的保氮能力和氮肥利用率、抑制土壤酸化等具有重要意义。  相似文献   

14.
高浓度沼液淹灌土水系统中氮、磷和有机物的动态变化   总被引:5,自引:0,他引:5  
通过室内静置培养模拟试验,研究了高浓度沼液淹灌稻田土壤后上覆水和土壤中氮、磷和有机物的动态变化特征。结果表明,全沼液淹灌处理的上覆水中总磷和NH+4-N浓度分别在30 d和50 d内降低到允许排放标准以下;降低灌溉沼液的浓度,可缩短排放达标所需时间;但硝态氮浓度经过迅速下降后又会显著升高,全沼液灌溉处理100 d后,上覆水中NO-3-N的浓度比灌溉初期提高了44.9%。灌溉沼液中污染物浓度的降低,主要是降解和挥发作用的结果,只有少部分留在土壤中。因此,在水田休闲期进行高浓度的沼液淹灌,不仅可以消解和净化沼液中污染物质,还能有效改善土壤养分性质,不会引起土壤中氮、磷和有机物质的过量积累。  相似文献   

15.
长期施肥对农田土壤氮素关键转化过程的影响   总被引:32,自引:0,他引:32  
王敬  程谊  蔡祖聪  张金波 《土壤学报》2016,53(2):292-304
当前,如何合理施肥、提高作物产量、维持土壤肥力、并兼顾生态环境效应是农业研究的主要挑战之一。本文综述了长期施肥对农田土壤氮素关键转化过程的影响,主要从土壤氮转化过程的初级转化速率角度综述肥料(有机肥和化学氮肥)对土壤氮素关键转化过程的影响。土壤氮素矿化-同化循环是自然界氮循环过程中两个至关重要的环节,是决定土壤供氮能力的重要因素。总体而言,长期施用氮肥,尤其是有机肥能显著提高初级矿化-同化周转速率;长期施肥可以刺激自养硝化作用,且有机肥的刺激作用更明显;施用化学氮肥和有机肥均能提高反硝化速率,且有机肥的刺激作用高于化学氮肥。有机肥一直被提倡和实践用来改善土壤肥力和提高土壤固碳能力,无论是单施有机肥还是有机-无机配施,均能有效地减轻硝酸盐污染,改善土壤肥力并提高作物产量。但是有机肥的施用并不是多多益善,有机肥过多施用也会增加氮损失的风险。因此,本文综述了长期施肥对农田土壤氮素关键转化过程初级转化速率的影响,讨论了各个氮转化过程之间的联系,以期增强人们对长期施肥措施影响农田土壤氮素循环的理解,并为合理施用氮肥、提高氮肥利用率、减少与氮相关的环境污染提供理论依据。  相似文献   

16.
尿素与有机肥配施对棕红壤氮素转化的影响   总被引:2,自引:0,他引:2  
为了解析尿素配施有机肥对土壤氮库活动的影响,通过室内恒温培养试验研究尿素(225kg N·hm~(-2))分别与低量(30 t·hm~(-2))、中量(60 t·hm~(-2))及高量(120、150 t·hm~(-2))有机肥配施条件下棕红壤有机氮库、无机氮库的动态变化。结果表明,配施有机肥土壤的有机氮含量较单施尿素增加16.3%~85.6%。中、高量配施显著提高土壤氮素矿化速率(p0.05),加剧无机氮转化强度,与单施尿素相比,无机氮最大矿化量增加52.9~246.0 mg·kg~(-1),有效矿化持续时间延长5 d,转化量增大2.3倍~8.7倍;配施有机肥提高土壤氨化强度,加快铵态氮(NH_4~+-N)转化速率。与单施尿素相比,配施有机肥处理NH_4~+-N含量峰值增加2.6~42.6 mg·kg~(-1),平均氨化速率提高7.8 mg·kg~(-1)·d~(-1),转化速率增加1.4倍~8.8倍。一定量配施有机肥(30~120 t·hm~(-2))对土壤的硝化过程无显著影响,但过高量配施有机肥(150 t·hm~(-2)),强化土壤硝化作用,硝化速率较单施尿素提高4.2倍,引起土壤硝态氮(NO-3-N)大量累积。氮素表观平衡结果表明,中、高量配施有机肥显著增加培养体系氮素表观损失,60、90和120 t·hm~(-2)处理氮素损失量分别较单施尿素增加2.2倍、2.8倍和2.3倍,占总输入氮的27.5%~34.5%,其中,NH_4~+-N转化损失是体系氮表观损失的主要途径。本研究结果为棕红壤合理培肥提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号