首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
融合YOLO v5n与通道剪枝算法的轻量化奶牛发情行为识别   总被引:2,自引:2,他引:0  
及时、准确地监测奶牛发情行为是现代化奶牛养殖的必然要求。针对人工监测奶牛发情不及时、效率低等问题,该研究提出了一种融合YOLO v5n与通道剪枝算法的轻量化奶牛发情行为识别方法。在保证模型检测精度的基础上,基于通道剪枝算法,对包括CSPDarknet53主干特征提取网络等在内的模块进行了修剪,以期压缩模型结构与参数量并提高检测速度。为了验证算法的有效性,在2239幅奶牛爬跨行为数据集上进行测试,并与Faster R-CNN、SSD、YOLOX-Nano和YOLOv5-Nano模型进行了对比。试验结果表明,剪枝后模型均值平均精度(mean Average Precision, mAP)为97.70%,参数量(Params)为0.72 M,浮点计算量(Floating Point operations, FLOPs)为0.68 G,检测速度为50.26 帧/s,与原始模型YOLOv5-Nano相比,剪枝后模型mAP不变的情况下,Params和FLOPs分别减少了59.32和49.63个百分点,检测速度提高了33.71个百分点,表明该剪枝操作可有效提升模型性能。与Faster R-CNN、SSD、YOLOX-Nano模型相比,该研究模型的mAP在与之相近的基础上,参数量分别减少了135.97、22.89和0.18 M,FLOPs分别减少了153.69、86.73和0.14 G,检测速度分别提高了36.04、13.22和23.02 帧/s。此外,对模型在不同光照、不同遮挡、多尺度目标等复杂环境以及新环境下的检测结果表明,夜间环境下mAP为99.50%,轻度、中度、重度3种遮挡情况下平均mAP为93.53%,中等尺寸目标和小目标情况下平均mAP为98.77%,泛化性试验中奶牛爬跨行为检出率为84.62%,误检率为7.69%。综上,该模型具有轻量化、高精度、实时性、鲁棒性强、泛化性高等优点,可为复杂养殖环境、全天候条件下奶牛发情行为的准确、实时监测提供借鉴。  相似文献   

2.
实时准确地识别奶牛个体身份是构建完善的奶牛精准养殖技术架构的先决条件。如何在快速精准识别奶牛个体的同时保证模型的轻量化是至关重要的。本文提出了一种在低计算量和低参数量条件下快速准确识别奶牛个体身份的方法。研究采用YOLOv5s作为原始模型,利用BN层中缩放因子对模型中通道的重要性进行判断并剪除不重要的通道,从而降低网络复杂度。为了更加有效地压缩模型,本研究在损失函数中增加稀疏损失项,实现模型通道的稀疏化。测试试验结果表明,剪枝后的模型平均精度mAP为99.50%,计算量为8.1 G,参数量为1.630 M,每秒帧数为135.14 帧。相比其他具有代表性的目标检测模型,本文方法拥有最小的模型复杂度。此外,相比其他模型,本文方法对奶牛斑纹特征依赖程度更低,在低照度条件下有着更加出色的表现。考虑该方法具有快速、准确、鲁棒、低计算量和低参数量的特点,在推进养殖场中奶牛精细化养殖方面具有巨大潜能。  相似文献   

3.
李韬  任玲  胡斌  王双  赵明  张玉泉  杨苗 《农业工程学报》2023,39(23):174-184
为了提高番茄穴盘苗分级检测精度,该研究提出了改进YOLOv5s目标检测模型,并通过迁移学习对番茄穴盘病苗识别精度进行优化。采用轻量级网络EfficientNetv2的Backbone部分作为特征提取网络,保留YOLOv5s中的SPPF空间金字塔池化模块,压缩模型参数数量以减少计算量;更改模型Neck部分原始上采样模块为CARAFE轻量级上采样模块,在引入很少参数量的情况下提高模型精度;同时将PANet替换为BiFPN,引入特征权重信息,增强不同尺度特征融合能力;引入有效多尺度注意力机制(efficient multi-scale attention,EMA),提高对番茄苗的关注,减少背景干扰;替换CIoU损失函数为SIoU损失函数,考虑真实框与预测框之间的方向匹配,提高模型收敛效果。试验结果表明,改进的YOLOv5s目标检测模型经过迁移学习训练后,平均精度均值达到95.6%,较迁移学习前提高了0.7个百分点;与原YOLOv5s模型相比,改进YOLOv5s模型平均精度均值提升2.6个百分点;改进YOLOv5s模型的参数量、计算量和权重大小分别为原YOLOv5s模型的53.1%、20.0%和53.6%,便于后期将模型部署到边缘设备中;与Faster-RCNN、CenterNet及YOLO系列目标检测模型相比,改进YOLOv5s模型在检测精度和检测速度方面均有明显优势,该研究成果可以为穴盘苗的分级检测提供依据。  相似文献   

4.
为提高橙果采摘定位精度和作业速度,提出一种便于迁移至移动终端的改进YOLOv4模型,可从RealSense深度相机所成彩色图像中获取果实质心二维坐标,经配准提取对应深度图中质心点深度值,实现果实的三维空间定位。改进YOLOv4模型以MobileNet v2为主干网络,在颈部结构中使用深度可分离卷积替换普通卷积,实现模型轻量化并提高检测速度。训练后的改进模型对513张独立橙果测试集数据的识别平均精度达97.24%,与原始YOLOv4模型相比,平均检测时间减少11.39 ms,模型大小减少197.5 M。与经典Faster RCNN、SSD模型相比,检测平均精度分别提高了2.85和3.30个百分点,模型大小分别减少了474.5和44.1 M。与轻量化模型YOLOv4-tiny相比,召回率提升了4.79个百分点,较Ghostnet-YOLOv4,检测速度提升了27.64个百分点。为验证该改进算法实用性,应用改进模型获取果园中78个橙果的位置信息,结果表明:果实二维识别成功率达98.72%,水平方向及垂直方向的平均绝对百分比误差均在1%以内。果实三维定位成功率达96.15%,深度信息平均绝对百分比误差为2.72%,满足采摘机械手精准定位需求。该方法为复杂场景下采摘作业实现提供了鲁棒性强、实时性好、精准度高的目标定位途径。  相似文献   

5.
采用改进YOLOv4-tiny的复杂环境下番茄实时识别   总被引:7,自引:7,他引:0  
实时识别番茄的成熟度是番茄自主采摘车的关键功能。现有目标识别算法速度慢、对遮挡番茄和小番茄识别准确率低。因此,该研究提出一种基于改进YOLOv4-tiny模型的番茄成熟度识别方法。在头部网络(Head network)部分增加一个76×76的检测头(y3)来提高小番茄的识别准确率。为了提高被遮挡番茄的识别准确率,将卷积注意力模块(Convolution Block Attention Module,CBAM)集成到YOLOv4-tiny模型的骨干网络(Backbone network)部分。在深层卷积中使用Mish激活函数替代ReLU激活函数以保证提取特征的准确性。使用密集连接的卷积网络(Densely Connected Convolution Networks, DCCN)来加强全局特征融合,并建立红风铃番茄成熟度识别的数据集。试验结果表明,与YOLOv3、YOLOv4、YOLOv4-tiny、YOLOv5m和YOLOv5l模型相比,改进YOLOv4-tiny-X模型的平均精度均值(mean Average Precision, mAP)分别提高了30.9、0.2、0.7、5.4和4.9个百分点,在Nvidia GTX 2060 GPU 上达到111帧/s的速度,平均精度均值达到97.9%。不同模型的实时测试可视化结果表明,改进模型能够有效解决遮挡和小番茄识别准确率低的问题,可为番茄采摘车研制提供参考。  相似文献   

6.
实现繁育期精准个体检测是提高集约养殖环境下肉鸽繁育效率和精准管控效果的有效手段,其中小目标鸽蛋及粘连乳鸽的精准检测是关键。该研究提出了一种基于改进RetinaNet的目标检测模型,以RetinaNet网络为基础框架,将ResNet50特征提取网络与特征金字塔网络(Feature Pyramid Networks,FPN)结合,增加特征金字塔网络中特征检测尺度,提升对图像中遮挡鸽蛋与粘连乳鸽的检测精度;在分类和回归子网络前引入卷积注意力模块(Convolutional Block Attention Module,CBAM),提升对小目标检测的精度。试验结果表明,该研究提出的模型对于笼养肉鸽个体检测的平均精度均值(mean Average Precision,mAP)达到80.89%,相比SSD、YOLOv3、YOLOv4、YOLOv5s、YOLOv5m和原始RetinaNet模型提高了18.66、29.15、19.92、21.69、18.99与15.45个百分点;对成鸽、乳鸽与鸽蛋检测的平均精度(Average Precision,AP)分别为95.88%,79.51%和67.29%,相对原始RetinaNet模型提高了2.16、21.74和22.48个百分点,在保证成鸽精准检测的基础上,显著提升了对复杂环境下存在局部遮挡的小目标鸽蛋以及粘连乳鸽的检测精度,为实现集约化养殖环境下肉鸽繁育周期个体检测和精准管控提供有效支持。  相似文献   

7.
面部对齐是猪脸识别中至关重要的步骤,而实现面部对齐的必要前提是对面部关键点的精准检测。生猪易动且面部姿态多变,导致猪脸关键点提取不准确,且目前没有准确快捷的猪脸关键点检测方法。针对上述问题,该研究提出了生猪面部关键点精准检测模型YOLO-MOB-DFC,将人脸关键点检测模型YOLOv5Face进行改进并用于猪脸关键点检测。首先,使用重参数化的MobileOne作为骨干网络降低了模型参数量;然后,融合解耦全连接注意力模块捕捉远距离空间位置像素之间的依赖性,使模型能够更多地关注猪面部区域,提升模型的检测性能;最后,采用轻量级上采样算子CARAFE充分感知邻域内聚合的上下文信息,使关键点提取更加准确。结合自建的猪脸数据集进行模型测试,结果表明,YOLO-MOB-DFC的猪脸检测平均精度达到99.0%,检测速度为153帧/s,关键点的标准化平均误差为2.344%。相比RetinaFace模型,平均精度提升了5.43%,模型参数量降低了78.59%,帧率提升了91.25%,标准化平均误差降低了2.774%;相较于YOLOv5s-Face模型,平均精度提高了2.48%,模型参数量降低了18.29%,标准化平均误差降低了0.567%。该文提出的YOLO-MOB-DFC模型参数量较少,连续帧间的标准化平均误差波动更加稳定,削弱了猪脸姿态多变对关键点检测准确性的影响,同时具有较高的检测精度和检测效率,能够满足猪脸数据准确、快速采集的需求,为高质量猪脸开集识别数据集的构建以及非侵入式生猪身份智能识别奠定基础。  相似文献   

8.
基于改进YOLO-V4网络的浅海生物检测模型   总被引:4,自引:4,他引:0  
海洋生物智能检测是海洋牧场战略的一部分,而利用水下机器人在复杂的海洋环境中快速、准确地检测海洋生物是关键问题。由于海底环境复杂、亮度分布不均匀、海洋生物与其生存环境的区分性差、生物被遮蔽或半隐蔽等原因,准确识别海洋生物是一个巨大的挑战。随着卷积神经网络的发展,基于深度学习的目标检测算法成为主流,出现了如EfficientDet、RetinaNet和YOLO-V4等典型算法。这些基于深度学习的算法都不是完全尽善尽美的,不能完全满足海洋生物识别的需求。在探测精度、运算速度、密集目标探测效果等方面都有提高的空间。该研究建立了一个海洋生物数据集,采集了原始图片1 810张,数据增强后得到7 240张图片,它们被分成训练集(80%)和测试集(20%)。其次,通过引入跨阶段局部网络的概念,构建了嵌连接EC(Embedded Connection)部件,并将其嵌入到YOLO-V4网络的末端,得到改进的YOLO-V4网络。最后,该研究提出了基于改进YOLO-V4网络的海洋生物检测模型MOD(Marine Organism Detection)。试验结果表明,MOD模型的mAP50、mAP75分别为0.969和0.734,计算量为35.328BFLOPs(十亿浮点运算数),检测帧速为139 ms(具有图形加速器GeForce GTX1650上)。与原始YOLO-V4模型相比,MOD模型的mAP50和mAP75提高了0.9和4.8个百分点,而计算量仅提高0.2%。此外,对比两种模型的PR曲线,MOD模型的精确度与召回率的平衡点更接近(1,1),因此MOD模型能学习精度和效率的平衡性更好。该研究直接面向浅海生物的目标检测问题,所提供的方法可以为水下机器人精准执行智能捕捞等任务提供有益参考。  相似文献   

9.
采用轻量级网络MobileNetV2的酿酒葡萄检测模型   总被引:1,自引:1,他引:0  
为提高高分辨率田间葡萄图像中小目标葡萄检测的速度和精度,该研究提出了一种基于轻量级网络的酿酒葡萄检测模型(Wine Grape Detection Model,WGDM)。首先,采用轻量级网络MobileNetV2取代YOLOv3算法的骨干网络DarkNet53完成特征提取,加快目标检测的速度;其次,在多尺度检测模块中引入M-Res2Net模块,提高检测精度;最后,采用平衡损失函数和交并比损失函数作为改进的定位损失函数,增大目标定位的准确性。试验结果表明,提出的WGDM模型在公开的酿酒葡萄图像数据集的测试集上平均精度为81.2%,网络结构大小为44 MB,平均每幅图像的检测时间为6.29 ms;与单发检测器(Single Shot Detector,SSD)、YOLOv3、YOLOv4和快速区域卷积神经网络(Faster Regions with Convolutional Neural Network,Faster R-CNN)4种主流检测模型相比,平均精度分别提高8.15%、1.10%、3.33%和6.52%,网络结构分别减小了50、191、191和83 MB,平均检测时间分别减少了4.91、7.75、14.84和158.20 ms。因此,该研究提出的WGDM模型对田间葡萄果实具有更快速、更准确的识别与定位,为实现葡萄采摘机器人的高效视觉检测提供了可行方法。  相似文献   

10.
为了快速精准地识别复杂果园环境下的葡萄目标,该研究基于YOLOv5s提出一种改进的葡萄检测模型(MRWYOLOv5s)。首先,为了减少模型参数量,采用轻量型网络MobileNetv3作为特征提取网络,并在MobileNetv3的bneck结构中嵌入坐标注意力模块(coordinate attention,CA)以加强网络的特征提取能力;其次,在颈部网络中引入RepVGG Block,融合多分支特征提升模型的检测精度,并利用RepVGG Block的结构重参数化进一步加快模型的推理速度;最后,采用基于动态非单调聚焦机制的损失(wise intersection over union loss,WIoU Loss)作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进的MRW-YOLOv5s模型参数量仅为7.56 M,在测试集上的平均精度均值(mean average precision,mAP)达到97.74%,相较于原YOLOv5s模型提升了2.32个百分点,平均每幅图片的检测时间为10.03 ms,比原YOLOv5s模型减少了6.13 ms。与主流的目标检测模型S...  相似文献   

11.
采用YOLO算法和无人机影像的松材线虫病异常变色木识别   总被引:5,自引:5,他引:0  
松材线虫病是一种传播速度快的毁灭性森林病害,利用无人机遥感及时对松材线虫病病害木进行监测,是控制松材线虫病蔓延的有效方式。该研究利用YOLO算法自动识别无人机遥感影像上的松材线虫病异常变色木,利用深度可分离卷积和倒残差结构改进YOLOv4算法,提高了识别的精度和效率。比较FasterR-CNN、EfficientDet、YOLOv4和YOLOv5与改进的YOLO算法的速度和精度,并分析了改进的YOLO算法在参与训练区域和未参与训练区域的异常变色木的识别效果。试验结果表明,改进后的YOLO算法的平均精度为80.85%,每个迭代周期的训练时间为164s,参数大小为44.2 MB,单张影像的测试时间为17 ms,表现优于Faster R-CNN和YOLOv4,但与EfficientDet和YOLOv5相比有优有劣,综合比较这4个指标,改进算法在检测速度和检测精度上的表现更为平衡。未参与训练区域异常变色木的F1分数(84.18%)略低于参与训练区域(87.92%),但基本满足异常变色木的监测要求。相似地物、林分郁闭度、坡向和分辨率会对识别精度产生影响,但影响较小。因此,改进的YOLO算法精度高、效率高,可用于松材线虫病异常变色木的快速识别,并且对未参与训练区域异常变色木的识别具有较高的适用性。  相似文献   

12.
基于自注意力机制与无锚点的仔猪姿态识别   总被引:1,自引:1,他引:0  
在猪场养殖过程中,仔猪姿态识别对其健康状况和环境热舒适度监测都有着重要意义。仔猪个体较小,喜欢聚集、扎堆,且姿态随意性较大,给姿态识别带来困难。为此,该文结合Transformer网络与无锚点目标检测头,提出了一种新的仔猪姿态识别模型TransFree(Transformer + Anchor-Free)。该模型使用Swin Transformer作为基础网络,提取仔猪图像的局部和全局特征,然后经过一个特征增强模块(Feature Enhancement Module,FEM)进行多尺度特征融合并得到高分辨率的特征图,最后将融合后的特征图输入Anchor-Free检测头进行仔猪的定位和姿态识别。该文以广东佛山市某商业猪场拍摄的视频作为数据源,从12个猪栏的拍摄视频中选取9栏作为训练集,3栏作为测试集,训练集中仔猪的俯卧、侧卧和站立3类姿态总计19 929个样本,测试集中3类姿态总计5 150个样本。在测试集上,TransFree模型的仔猪姿态识别精度达到95.68%,召回率达到91.18%,F1-score达到93.38%;相较于CenterNet、Faster R-CNN和YOLOX-L目标检测网络,F1-score分别提高了2.32、4.07和2.26个百分点。该文提出的TransFree模型实现了仔猪姿态的高精度识别,为仔猪行为识别提供了技术参考。  相似文献   

13.
融合动态机制的改进型Faster R-CNN识别田间棉花顶芽   总被引:4,自引:4,他引:0  
针对田间密植环境棉花精准打顶时,棉花顶芽因其小体积特性所带来识别困难问题,该研究提出一种改进型更快速区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster R-CNN)目标检测算法实现大田环境棉花顶芽识别。以Faster R-CNN为基础框架,使用 RegNetX-6.4GF作为主干网络,以提高图像特征获取性能。将特征金字塔网络(Feature Pyramid Network,FPN)和导向锚框定位(Guided Anchoring,GA)机制相融合,实现锚框(Anchor)动态自适应生成。通过融合动态区域卷积神经网络(Dynamic Region Convolutional Neural Networks,Dynamic R-CNN)方法,实现训练阶段检测模型自适应候选区域(Proposal)分布的动态变化,以提高算法训练效果。最后在目标候选区域(Region of Interest,ROI)中引入目标候选区域提取器(Generic ROI Extractor,GROIE)提高图像特征融合能力。采集自然环境7种不同棉花材料总计4 819张图片,建立微软常见物体图像识别库2017(Microsoft Common Objects in Context 2017,MS COCO 2017)格式的棉花顶芽图片数据集进行试验。结果表明,该研究提出的方法平均准确率均值(Mean Average Precision,MAP)为98.1%,模型的处理速度(Frames Per Second,FPS)为10.3帧/s。其MAP在交并比(Intersection Over Union,IOU)为0.5时较Faster R-CNN、RetinaNet、Cascade R-CNN和RepPoints网络分别提高7.3%、78.9%、10.1%和8.3%。该研究算法在田间对于棉花顶芽识别具有较高的鲁棒性和精确度,为棉花精准打顶作业奠定基础。  相似文献   

14.
基于改进YOLOv4模型的全景图像苹果识别   总被引:3,自引:3,他引:0  
苹果果园由于密植栽培模式,果树之间相互遮挡,导致苹果果实识别效果差,并且普通的图像采集方式存在图像中果实重复采集的问题,使得果实计数不准确。针对此类问题,该研究采用全景拍摄的方式采集苹果果树图像,并提出了一种基于改进YOLOv4和基于阈值的边界框匹配合并算法的全景图像苹果识别方法。首先在YOLOv4主干特征提取网络的Resblock模块中加入scSE注意力机制,将PANet模块中的部分卷积替换为深度可分离卷积,且增加深度可分离卷积的输出通道数,以增强特征提取能力,降低模型参数量与计算量。将全景图像分割为子图像,采用改进的YOLOv4模型进行识别,通过对比Faster R-CNN、CenterNet、YOLOv4系列算法和YOLOv5系列算法等不同网络模型对全景图像的苹果识别效果,改进后的YOLOv4网络模型精确率达到96.19%,召回率达到了95.47%,平均精度AP值达到97.27%,比原YOLOv4模型分别提高了1.07、2.59、2.02个百分点。采用基于阈值的边界框匹配合并算法,将识别后子图像的边界框进行匹配与合并,实现全景图像的识别,合并后的结果其精确率达到96.17%,召回率达到95.63%,F1分数达到0.96,平均精度AP值达到95.06%,高于直接对全景图像苹果进行识别的各评价指标。该方法对自然条件下全景图像的苹果识别具有较好的识别效果。  相似文献   

15.
基于改进Faster R-CNN识别深度视频图像哺乳母猪姿态   总被引:13,自引:11,他引:2  
猪舍场景下,昼夜交替光线变化、热灯光照影响,及仔猪与母猪的粘连等因素,给全天候哺乳母猪姿态自动识别带来很大困难。该文以深度视频图像为数据源,提出基于改进Faster R-CNN的哺乳母猪姿态识别算法。将残差结构引入ZF网络,设计ZF-D2R网络,以提高识别精度并保持实时性;将Center Loss监督信号引入Faster R-CNN训练中,以增强类内特征的内聚性,提升识别精度。对28栏猪的视频图像抽取站立、坐立、俯卧、腹卧和侧卧5类姿态共计7 541张图像作为训练集,另取5类姿态的5 000张图像作为测试集。该文提出的改进模型在测试集上对哺乳母猪的站立、坐立、俯卧、腹卧和侧卧5类姿态的识别平均准确率分别达到96.73%、94.62%、86.28%、89.57%和99.04%,5类姿态的平均准确率均值达到93.25%。在识别精度上,比ZF网络和层数更深的VGG16网络的平均准确率均值分别提高了3.86和1.24个百分点。识别速度为0.058 s/帧,比VGG16网络速度提高了0.034 s。该文方法在提高识别精度的同时保证了实时性,可为全天候母猪行为识别提供技术参考。  相似文献   

16.
基于隐马尔科夫模型的深度视频哺乳母猪高危动作识别   总被引:5,自引:4,他引:1  
哺乳母猪的高危动作和仔猪存活率有密切关系,能直接体现其母性行为能力,而这些高危动作又与其姿态转换的频率、持续时间等密切相关。针对猪舍环境下,环境光线变化、母猪与仔猪黏连、猪体形变等给哺乳母猪姿态转换识别带来的困难。该文以梅花母猪为研究对象,以Kinect2.0采集的深度视频图像为数据源,提出基于Faster R-CNN和隐马尔科夫模型的哺乳母猪姿态转换识别算法,通过FasterR-CNN产生候选区域,并采用维特比算法构建定位管道;利用Otsu分割和形态学处理提取疑似转换片段中母猪躯干部、尾部和身体上下两侧的高度序列,由隐马尔科夫模型识别姿态转换。结果表明,对姿态转换片段识别的精度为93.67%、召回率为87.84%。研究结果可为全天候母猪行为自动识别提供技术参考。  相似文献   

17.
针对奶牛养殖场复杂环境下多目标奶牛嘴部自动跟踪及反刍监测的困难,该研究提出了一种基于嘴部区域跟踪的多目标奶牛反刍行为智能监测方法。在YOLOv4模型识别奶牛嘴部上下颚区域的基础上,以Kalman滤波和Hungarian算法跟踪上颚区域,并对同一奶牛目标的上颚和下颚区域进行关联匹配获取嘴部咀嚼曲线,以此获取反刍相关信息,从而实现多目标奶牛个体的嘴部跟踪和反刍行为监测;为解决奶牛快速摆头运动和棚舍栏杆遮挡引发奶牛标号变化的问题,提出未匹配跟踪框保持及扩大的方法。采集并选择实际养殖场环境下的反刍奶牛视频66段,对其中58段视频采取分帧操作得到图像,制作YOLOv4模型数据集,以其余8段视频验证跟踪方法和反刍行为判定方法的有效性。试验结果表明,YOLOv4模型对奶牛嘴部上颚、下颚区域的识别准确率分别为93.92%和92.46%;改进的跟踪算法可实现复杂环境下多目标奶牛嘴部区域的稳定跟踪,且有效解决了栏杆遮挡、快速摆头运动造成的奶牛标号变化现象,上下颚匹配率平均为99.89%,跟踪速度平均为31.85帧/s;由反刍行为判定方法获取的咀嚼次数正确率的平均值为96.93%,反刍时长误差的平均值为1.48 s。该研究可为实际养殖中多目标奶牛反刍行为的智能监测和分析提供参考,也可供其他群体动物运动部位的跟踪和行为监测借鉴。  相似文献   

18.
为提高香蕉采摘机器人的作业效率和质量,实现机器人末端承接机构的精确定位,该研究提出一种基于YOLOv5算法的蕉穗识别,并对蕉穗底部果轴进行定位的方法。将CA(Coordinate Attention)注意力机制融合到主干网络中,同时将C3(Concentrated-Comprehensive Convolution Block)特征提取模块与CA注意力机制模块融合构成C3CA模块,以此增强蕉穗特征信息的提取。用 EIoU(Efficient Intersection over Union)损失对原损失函数CIoU(Complete Intersection over Union)进行替换,加快模型收敛并降低损失值。通过改进预测目标框回归公式获取试验所需定位点,并对该点的相机坐标系进行转换求解出三维坐标。采用D435i深度相机对蕉穗底部果轴进行定位试验。识别试验表明,与YOLOv5、Faster R-CNN等模型相比,改进YOLOv5模型的平均精度值(mean Average Precision, mAP)分别提升了0.17和21.26个百分点;定位试验表明,采用改进YOLOv5模型对蕉穗底部果轴定位误差均值和误差比均值分别为0.063 m和2.992%,与YOLOv5和Faster R-CNN模型相比,定位误差均值和误差比均值分别降低了0.022 m和1.173%,0.105 m和5.054%。试验实时可视化结果表明,改进模型能对果园环境下蕉穗进行快速识别和定位,保证作业质量,为后续水果采摘机器人的研究奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号