首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
This paper deals with a study on the effects of Chinese fir,lobolly pine and deciduous oak forests o the nutrient status of soils in northern subtropics of China,adopting the principle of forest ecology in the case of similar climate and soil type.The experimental area was situated in the Xiashu Experimental Centre of Forest,where the soil is yellow-brown soil derved from siliceous slope wash.Sample plots of these 3 stands were established to study the nutrient status in litter ,the amount of nutrient uptake by roots,the quantity of nutrient output by percolating water outside the deep layer of soil,and the seasonal dynamics of available nutrient in surface soil.It was whown that the intensity of nutrient cycling in soil under deciduous oak was the highest,and the effect of oak in improving soil fertility was the best.The result of improving soil fertility by Chinese fir was the most inferior,though the intensity of nutrient cycling under that stand was higher than that under loblolly pine stand.The influence of loblolly pine on the improvement of soil fertility was better than that of Chinese fir,in spite of its lowest intensity of nutrient cycling.  相似文献   

2.
不同种类中国杉对土壤养分状况的影响   总被引:2,自引:0,他引:2  
The effects of different types of Chinese fir stand,including those with varous composition (pure and mixed),in various cropping systems (first and continuous cropping system)and at different ages,on the nutrient status of soils the hilly regions of southern Anhui Province were studied by means of ecological sequential comparison on the basis of similar climate and soil type.The work was carried out in the Xiaoxi Forest Farm of Jingxian County and the Caijiaqiao Forest Farm of Jingde Coundy,where the soil is parayellow soil derived from phyllite and sandstone,The results revealed that with the increase of age,Chinese fir pure stand could accumulate organic matter and nitrogen in the soil but it resulted in decreasing of soil pH and base ions(especially Ca^2 ) compared to its mixed stand with broad-leaf trees such as Chinese sassafras,In order to improve the soil fertility,It would be better to mix Chinese fir with broad-leaf trees when afforestation In the management of Chinese fir pure stand,base compounds and phosphates should be added to the soil for mintaining soil fertility and raising and raising forest productivity.  相似文献   

3.
OUYANG TAO 《土壤圈》1993,3(2):119-126
Investigations were carried out on the micronutrient contents,of major citrus orchard soils (involving seven soil great groups in 8 provinces and an autonomous region of southern China),and an evaluation on the abundance and deficiency of available micronutrients in these soils was made in this paper.In southern China,citrus orchard soils derived from sandstone,sandy shale,Quaternary red clay,diluvial deposit,granite gneiss and neritic deposit were deficient in available Mo and B and low in Zn.Those developed on purple sandy shale,limestone and slope deposit were all in short supply of available Zn,B and Mo.Coastal solonchak was fairly abundant in B,but its available Fe,Zn and Mo contents were rather low.  相似文献   

4.
Ninety-three soil samples and 19 sedimentary rock samples collected from 21 provinces of China were analyzed for their contents of fixed ammonium and total N by Kjeldahl-HF method. Results showed that amount of difficultly extractable fixed ammonium (the fixed ammonium that is not determinable by Kjeldahl procedures commonly used for soils) in soils ranged from 0 to 202 mg kg-1. It was generally more than 50 mg kg-1 in soils in Changji and Turpan districts, Xinjiang, accounting for 3.2%~36.8% with an average of 13.9% of the total N. For some Orthents derived from purple shale and purple sandstone in Sichuan and Hunan provinces and Chao soils derived from secondary loess in Henan Province and Ningxia Autonomous Region it was generally around 30 mg kg-1, accounting for 4%~7% of the total soil N, and for most of the rest of soils studied, with the exception of some subsoils, no or trace difficultly extractable fixed ammonium could be detected. It was suggested that the difficultly extractable fixed ammonium was originated from parent rock, and for slightly weathered soils derived from parent materials rich in this form of N the Kjeldahl method might give underestimation of total soil N.  相似文献   

5.
中国杉连作对土壤肥力的影响   总被引:10,自引:0,他引:10  
The changes in soil fertility under continuous plantation of Chinese fir were studied by comparing soil samples from different forest stands:the first and second plantations of Chinese fir,evergreen broad-leaved forests,and clear-cut and burnt Chinese fir land located at Xihou Village,Nanping of Fujian Province.The soils were humic red soil originated from weathered coarse granite of the Presinian system.Soil pH,CEC,base saturation ,exchangeable Ca^2 ,exchangeable Mg^2 and A1-P declined after continuous plantation of Chinese fir.The same trends were also found in the soils under broad-leaved stands and slash burnt lands.The explantation was that not merely the biological nature of the Chinese fir itself but the natural leaching of nutrients,soil erosion and nutrient losses due to clear cutting and slash burning of the preceduing plantation caused the soil deterioration .Only some of main soil nutrients decreased after continuous plantation of Chinese fir,depending on specific silvicultural system,which was different from the conclusions in some other reports which showed that all main nutrients,such as OM,total N,available P and available K decreased,Some neccessary step to make up for the lost base,to apply P fertilizer and to avoid buring on clear cut lands could be taken to prevent soil degradation and yield decline in the system of continuous plantation of Chinese fir.  相似文献   

6.
人工林代替天然林后土壤碳库的变化   总被引:19,自引:8,他引:19  
Changes in soil carbon pools under Chinese fir (Cunninghamia lanceolata) and bamboo (Phyllostachys pubescent) plantations substituted for a native forest (Quercus acutissima, Cyclobalanopsis glauca, Cas-tanops~.s sclerophyUa, Platycarya strobilacea, Lithocarpus glaber) were studied on the hills with acid parent rock and soils classified as red soils (Ferrisols) in Huzhou, Zhejiang Province of east China. It was found that total soil organic carbon (TSOC), easily oxidisable carbon (EOC) and water-soluble organic carbon(WSOC) under bamboo plantation were increased, but microbial biomass carbon (MBC) was decreased. On the contrary, Chinese fir induced declines of all fractions of C including TSOC, EOC, WSOC and MBC.The percentages of the active fractions of soil C (EOC and WSOC) were increased in the plantations as compared to the native broad-leaved forest, but proportions of soil organic C as MBC were decreased. It could be concluded that bamboo plantation had a great ability of not only fixing C but also accelerating soil C pool cycle, improving nutrient and microorganism activity; therefore, it is a good ecosystem and could be recommended for wide development. Chinese fir would shrink the soil C pool and deteriorate sou biological fertility, so it did not benefit CO2 fixing and land sustainable utilization.  相似文献   

7.
Pot experiments were carried out to estimate N2 fixation by vetch,milk vetch,sickle alfalfa and broadbean in pure stand using a ^15N-labelled soil.Winter wheat was used as the non-fixing control.The 15N-labelled soil used was prepared by growing corn-wheat-corn successively on a nearly organic-matter-free Xiashu loess supplemented with adequate amounts of (15NH4)2SO4,P,K and micronutrients,then incorporating these 15N-labelled plant materials into the soil after each havest,and allowing the plant materials to be decomposed aerobically for 410d after incorporation of the plant material of the thire crop.The 15N enrichment of wheat plant-N varied slightly with organs,with a maximum difference of 9.8%,Based on 15N enrichment of soil N inferred from the mean value of the 15N enrichment in different organs of wheat 79%-91% of total N in the tops and 67%-74% of total N in the roots of legumes studied were derived from atmosphere .Estimate by isotope dilution method was in good agreement with that by the conventional difference method provided values obtained by the latter were corrected for seed N,and also with that from the measurement of N accumulated in the tops of the legumes.  相似文献   

8.
OUYANG TAO 《土壤圈》1993,3(4):341-347
By using nutritional diagnosis of citrus leaves and determining soil micronutrients,the relationship between soil micronutrients and citrus growth in southern China has been studied.Studies showed that there was a significant positive correlation between available micronutrients (such as Zn,Mo,Cu)in the soil and the corresponding nutrients in citrus leaves.Thus,one can roughly learn of the sufficiency or deficiency of certain nutrients in soils by analyzing citrus leaves.Rational spray of Zn B or Mo fertilizer not only improved citrus yields but also increased the total sugar of Satsuma mandarin and of Xinhui orange by 2.9 and 17.2% respectively compared with the control.Spraying Mo fertilizer increased the vitamin C content of Satsuma mandarin juice by 4.7%-8.4%,maturated fruits 7-10 days earlier and gave the peel a brighter color.The ultramicroscopic characteristics of Zn-deficient citrus leaves were investigated under an electron microscope.Results showed that the Zn-deficient leaf cell was characterized mainly by poor cytoplasm,endoplasmic reticula and ribosomes and by big starch grains in the chloroplast.As a result of spraying Zn fertilizer the structure of the cell returned to normal,the cytoplasm became rich and the amount of chloroplast increased.There also appeared a great deal of multiform endoplasmic reticula,thus promoting the photosynthesis of Zn-deficient plants.This provides a cytologico-theoretical basis for fertilization of high-yielding citrus trees.  相似文献   

9.
Investigations into forest soils face the problem of the high level of spatial variability that is an inherent property of all forest soils. In order to investigate the effect of changes in residue management practices on soil properties in hoop pine (Araucaria cunninghamii Aiton ex A. Cunn.) plantations of subtropical Australia it was important to understand the intensity of sampling effort required to overcome the spatial variability induced by those changes. Harvest residues were formed into windrows to prevent nitrogen (N) losses through volatilisation and erosion that had previously occurred as a result of pile and burn operations. We selected second rotation (2R) hoop pine sites where the windrows (10-15 m apart) had been formed 1, 2 and 3 years prior to sampling in order to examine the spatial variability in soil carbon (C) and N and in potential mineralisable N (PMN) in the areas beneath and between (inter-) the windrows. We examined the implications of soil variability on the number of samples required to detect differences in means for specific soil properties, at different ages and at specified levels of accuracy. Sample size needed to accurately reflect differences between means was not affected by the position where the samples were taken relative to the windrows but differed according to the parameter to be sampled. The relative soil sampling size required for detecting differences between means of a soil property in the inter-windrow and beneath-windrow positions was highly dependent on the soil property assessed and the acceptable relative sampling error. An alternative strategy for soil sampling should be considered, if the estimated sample size exceeds 50 replications. The possible solution to this problem is collection of composite soil samples allowing a substantial reduction in the number of samples required for chemical analysis without loss in the precision of the mean estimates for a particular soil property.  相似文献   

10.
Through the long-term plot studies plot studies on the precipitation distribution in the evergreen broad-leaved forest ecosystem in Hangzhou for two years,it was indicated that the pattern of precipitation distribution included larger amounts of penetration water and stemflow and a lower amount of interception water.The results revealed that the main factors to infulence the percentages of penetration and stemflow were the air temperature and the leaf area of the forest.The quantity of seepage through the litter layer was much larger than that through the soil layers which decreased sharply with soil depth.The output of water from the ecosystem by surface runoff and deep infiltration through the soil was much lower,only being 5.20 percent of the rainfall,while the water evapotranspiration loss was as large as more than 90 percent of it.The losses by the soil evaporation and plant evapotranspiration were the largest part of output in this forest ecosystem.  相似文献   

11.
Background, aim, and scope  Soil micronutrients are essential for plant growth and human health. Spatial variability and evaluation of soil micronutrient status are the research hotspot. The plain of northern Zhejiang Province, around Taihu Lake, China, is a key agriculture production area. With the rapid development of agriculture in Zhejiang Province, the management of soil micronutrients is of increasing concern to sustain crop productivity and human health. Soil-available micronutrients in the study region have not previously been studied in detail. Primary objective of this research was to examine the spatial distribution and evaluation of soil-available micronutrients in the arable land in this agriculturally important region using geostatistics. The controlling factors for the spatial variability of available micronutrients were interpreted. The research findings attained in the present study are of fundamental significance in providing a guideline for precise agriculture management practice and sustaining food security. Materials and methods  Amounts of available Fe, Mn, Cu, Zn, B and Mo in 1893 soil samples taken from the arable land in nine counties in northern Zhejiang Province, around Taihu Lake, were measured and their spatial distribution patterns were investigated. Available Mn, Fe, Cu, and Zn were extracted with DTPA and analyzed by inductively coupled plasma–atomic emission spectroscopy. Available B was extracted with boiled water, then determined by inductively coupled plasma–optical emission spectroscopy. Available Mo was extracted with Tamm reagent and was then determined by inductively coupled plasma-mass spectrometry. Geostatistics was conducted for the data processing. Results  More than 50% of the arable land were deficient in available Mo, while more than 70% had extremely low amount of available B. Amounts of available Cu, Zn and Mn were relatively high, whereas the soils are extremely sufficient in available Fe. The geostatisticical data shows that Mn, Cu, Zn, and Mo were best fit with an exponential model, while Fe and B were best fit with a spherical and linear model, respectively. Copper and Mo had strong spatial dependency, which is attributable to the effects of natural factors including parent material, topography, and soil type; Fe, Mn, and Zn had medium spatial dependency; however, B had weak spatial dependency, indicating an involvement of anthropogenic factors. Nevertheless, the six micronutrients studied all show spatial distribution trend to a certain extent. Discussion  Based on the provincial classification standard of soil micronutrients and the results of the present study, regionalized management of soil micronutrients was recommended. We divided the soil micronutrients investigated in the present study into three types: Type I (Fe), Type II (Mn, Cu, and Zn) and Type III (B and Mo). Type I is sufficient, and its amount needs to be controlled; otherwise, it will be toxic to crops. Type II is enough and its amount does not need to be increased currently through micronutrient fertilization. However, Type III is deficient in substantial areas in the region studied and its cause of deficiency needs to be investigated; its availability needs to be improved to sustain the crop production and food quality. The availability of B and Mo in the north of Zhejiang Province should be regionally managed. Over the past two decades, the spatial variability of soil-available micronutrients in the study region was attributable to the soil formation factors as well as anthropogenic activities such as fertilization, cultivation, and other soil management practices. The lower available B and Mo concentrations in the arable land were apparently due to continuous cropping and intensive applications of fertilizers without adequate supply of micronutrients. The high available Fe and Mn concentrations in the soils were attributed to increasing soil acidification and relatively high soil organic matter contents. The high available Cu and Zn levels of the soils in this region were attributed to intensive utilization of animal manure as fertilizers. Conclusions  Based on the provincial classification standard and the results from the present study, regionalized management of soil micronutrients was recommended. Moreover, the present study would provide an insight into understanding the basis for the development of innovative strategies for land management practices such as precision farming and environmental risk assessment. Recommendations and perspectives  The research findings attained in the present study would help to improve our understanding of spatially variable availability of soil micronutrients and providing a quantitative basis for decision and policy making to develop innovative agricultural management strategies to sustain micronutrient nutrition. Further research should be conducted to elucidate the relationship between soil micronutrient and plant growth and human health.  相似文献   

12.
长江中游农田土壤微量养分空间分布特征   总被引:10,自引:0,他引:10  
张智  任意  鲁剑巍  郑磊  苗洁  李小坤  任涛  丛日环 《土壤学报》2016,53(6):1489-1496
为了更好地掌握长江中游土壤肥力状况,运用地统计学和Arc GIS技术相结合的方法,对湖北、湖南、江西三省41 943个土壤样品的微量养分(铁Fe、锰Mn、铜Cu、锌Zn、硼B)含量的分布特征和空间变异进行研究。结果表明,长江中游土壤有效态Fe、Mn、Cu、Zn、B的平均含量分别为88.0、27.2、3.05、1.71、0.41 mg kg-1。空间分布特征表现为Fe、Mn均以江汉平原区较低,Zn以湖南省较低,Cu、B空间分布较为不均;与第二次土壤普查结果相比,土壤微量养分含量均有所提高,其中Fe、Mn、Cu含量为缺乏或严重缺乏的面积比例分别降至0.1%、2.2%和0.1%,而Zn和B分别为30.8%和17.7%。不同的土地利用类型、土壤类型和成土母质对土壤微量养分均有不同程度的影响。随着微量养分在农业生产中的贡献越来越突出,亟须根据土壤微量养分的分布特征进行分区管理。  相似文献   

13.
湘北丘岗地区红壤和水稻土微量元素的有效性研究   总被引:5,自引:2,他引:5  
本文对湘北丘岗区土壤微量元素Cu、Zn、B、Mo、Mn和Fe的有效性进行了研究 .结果表明 ,该区大面积土壤缺Zn、缺B ,也有部分土壤缺Cu和Mo,而有效Mn含量较为丰富 .微量元素有效性与成土母质的关系极为密切 ,土壤 pH、有机质含量及土壤质地也是影响微量元素有效性的重要因素  相似文献   

14.
Abstract

This research was aimed at evaluating the current water extraction methods for the analysis of four substrates treated with and without micronutrients. Black peat, coir, rice hulls, and pine bark (Pinus elliotis) were treated as follows: 1) control, 2) nitrogen, phosphorus, and potassium (NPK), and 3) NPK+M (micronutrients). Substrate samples were collected at 20 and 120 days of incubation for the determination of micronutrient concentrations. After 120 days of incubation, B, Mn, and Zn were easily detected in the SE, 1:1.5 v/v, and 1:2 v/v extracts from treatments with added micronutrients. Cu and Fe concentrations did not differ among treatments, irrespective of the extraction method used. Pine bark and black peat showed the lowest micronutrient concentrations for B and Zn; coir showed high values for B, Fe, and Zn concentrations; and rice hulls showed the highest Mn and Zn concentrations. SE and the 1:1.5 water extract were the best methods for substrate micronutrients evaluation.  相似文献   

15.
Micronutrient deficiencies are common in many parts of China's Loess Plateau. The objective of this experiment was to study the effects of long-term cropping and fertilization practices on soil properties and micronutrient availability in this region. The field plot experiment began in 1984. It included five cropping systems and four fertilizer treatments. In September 2002, soil samples were collected and soil pH, organic matter content, available P, and CaCO3 were measured. Total and available Zn, Cu, Mn, and Fe were also determined. The relationship between soil properties and available micronutrients was determined by correlation and path analysis. After 18 years, soil pH and CaCO3 levels were lower in the cropped and fertilized treatments compared to the fallow treatment. In contrast, soil organic matter and available P levels were higher in cropped compared to fallow treatments. A comparison of unfertilized treatments indicated that available Zn and Cu levels in cropped treatments were lower compared to the fallow treatment, probably due to the removal of these micronutrients from the system through crop uptake and harvest. In contrast, available Mn and Fe levels were higher in cropped treatments compared to the fallow treatment. The impacts of fertilization on available micronutrients varied with cropping systems. Generally, available Zn and Fe were higher in fertilized compared to unfertilized treatments, but available Cu was not significantly influenced by fertilization. Fertilization tended to increase available Mn in continuous wheat and maize, but reduced available Mn in continuous clover and the crop–legume rotation. The total (plant available + unavailable) micronutrient contents were lower in the four cropped-treatments compared to the fallow treatment. The addition of manure or P fertilizer increased total Zn, Fe, and Mn, but had no significant effect on total Cu. The results of correlation analysis and path analysis indicated that soil organic matter exerts a significant and direct effect on the availability of Zn, Mn, and Fe, but has little influence on available Cu. The effects of available P, CaCO3, and pH on micronutrient availability were indirect, passing through soil organic matter. The results of this study suggest that long-term cropping and fertilization altered several important soil properties and increased the plant available micronutrient content of this loess-derived soil.  相似文献   

16.
Abstract

Micronutrients are applied alone to soils or with macronutrient fertilizers. Foliar application of Fe and other micronutrients is also practiced, and Mo is usually applied as a seed treatment. Since the soil application rates of B, Cu, Mn, and Zn are low, they are usually applied with macronutrient fertilizers by incorporation during the manufacturing process, bulk blending with or coating onto granular fertilizers, or with fluid fertilizers.

Chemical reactions between the micronutrient source and the macronutrient fertilizer may occur in the manufacturing process, in storage, or after soil application. These reaction products may vary widely, so care must be taken in selecting and processing micronutrient sources and macronutrient carriers so the resulting products will be available to plants. In general, plant availability of B sources is not affected during reaction. Care must be taken to apply boronated fertilizers uniformly and to avoid excessive rates, because the range between B deficiency and toxicity is very narrow. Crop response to Cu, Mn, and Zn varies with the micronutrient rate and source, macronutrient carrier, and method of application.  相似文献   

17.
论述了临沂市土壤中硼、锌、锰、铜、铁等5种主要微量元素的状况与其它因素的关系。有效硼含量0.09~3.67 mg/kg,平均0.35 mg/kg;有效锰22~572 mg/kg,平均244 mg/kg;有效锌0.15~4.02 mg/kg,平均0.53 mg/kg;有效铜0.09~5.78 mg/kg,,平均1.03 mg/kg;有效铁3.2~162 mg/kg,平均21.5 mg/kg;有效锰2.0~131.4 mg/kg,平均23.4 mg/kg。不同土壤类型的以上5种微量元素有明显差异,其特征是砂姜黑土缺锌,棕壤、水稻土富含铁、铜、锰、锌;成土母质是影响土壤微量元素的重要因素之一,发育在基性岩上的土壤一般含量较高,而由红土母质发育的土壤则含量较低。土壤有机质含量与土壤微量元素有明显正相关关系,其中速效锌、速效硼和速效铜与有机质的关系尤为显著。  相似文献   

18.
Micronutrient status in soils and crops can be affected by different fertilization practices during a long-term field experiment. This paper investigated the effects of different fertilization treatments on total and DTPA-extractable micronutrients in soils and micronutrients in crops after 16 year fertilization experiments in Fengqiu County, Henan Province, China. The treatments of the long-term experiment included combinations of various rates of N, P and K in addition to two rates of organic fertilizer (OF) treatments. Winter wheat and summer maize were planted annually. Soil macro- and micronutrients along with pH and organic matter (OM) were analyzed. Grains and above ground parts of both crops in the final year were harvested and analyzed for Cu, Zn, Fe and Mn. The results showed that soil Cu, Zn, Fe and Mn concentrations did not change among the different treatments to a significant level, except for a slight decrease of soil Zn in the CK (no fertilizer application) compared to the OF treatment. The DTPA-extractable soil Zn, Fe and Mn concentrations increased from 0.41 to 1.08 mg kg−1, from 10.3 to 17.7 mg kg−1, and from 9.7 to 11.8 mg kg−1, respectively, with increasing soil OM content, thus showing the importance of soil OM in micronutrient availability for crops. The NPK treatment also had higher DTPA-extractable micronutrient concentrations in soil. Deficiency of N or P resulted in a low yield but high micronutrient concentrations in crops except Cu in maize stalks. Higher available soil P significantly decreased crop micronutrients, possibly because of their precipitation as metal phosphates. Maize stalks contained higher concentrations of micronutrients than those of wheat straw, whereas wheat grain had higher micronutrients than those of corn grain. The transfer coefficients (TCs) of micronutrients from straw to grain were significantly different between winter wheat (1.63–2.52 for Cu; 2.31–3.82 for Zn; no change for Fe; 0.55–0.84 for Mn) and summer maize (0.24–0.50 for Cu; 0.50–1.21 for Zn; 0.02–0.04 for Fe; 0.07–0.10 for Mn). In conclusion, application of organic matter significantly increased the DTPA-extractable concentrations of Zn, Fe and Mn compared to the CK, grain and vegetative tissue in the CK and NK had higher micronutrient concentrations than those in other treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号