首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
ABSTRACT

In this paper, we study a novelly robust variable selection and parametric component identification simultaneously in varying coefficient models. The proposed estimator is based on spline approximation and two smoothly clipped absolute deviation (SCAD) penalties through rank regression, which is robust with respect to heavy-tailed errors or outliers in the response. Furthermore, when the tuning parameter is chosen by modified BIC criterion, we show that the proposed procedure is consistent both in variable selection and the separation of varying and constant coefficients. In addition, the estimators of varying coefficients possess the optimal convergence rate under some assumptions, and the estimators of constant coefficients have the same asymptotic distribution as their counterparts obtained when the true model is known. Simulation studies and a real data example are undertaken to assess the finite sample performance of the proposed variable selection procedure.  相似文献   

2.
In this paper, we consider the problem of variable selection for partially varying coefficient single-index model, and present a regularized variable selection procedure by combining basis function approximations with smoothly clipped absolute deviation penalty. The proposed procedure simultaneously selects significant variables in the single-index parametric components and the nonparametric coefficient function components. With appropriate selection of the tuning parameters, the consistency of the variable selection procedure and the oracle property of the estimators are established. Finite sample performance of the proposed method is illustrated by a simulation study and real data analysis.  相似文献   

3.
Abstract

In this paper we are concerned with variable selection in finite mixture of semiparametric regression models. This task consists of model selection for non parametric component and variable selection for parametric part. Thus, we encountered separate model selections for every non parametric component of each sub model. To overcome this computational burden, we introduced a class of variable selection procedures for finite mixture of semiparametric regression models using penalized approach for variable selection. It is shown that the new method is consistent for variable selection. Simulations show that the performance of proposed method is good, and it consequently improves pervious works in this area and also requires much less computing power than existing methods.  相似文献   

4.
Jing Yang  Fang Lu  Hu Yang 《Statistics》2017,51(6):1179-1199
In this paper, we develop a new estimation procedure based on quantile regression for semiparametric partially linear varying-coefficient models. The proposed estimation approach is empirically shown to be much more efficient than the popular least squares estimation method for non-normal error distributions, and almost not lose any efficiency for normal errors. Asymptotic normalities of the proposed estimators for both the parametric and nonparametric parts are established. To achieve sparsity when there exist irrelevant variables in the model, two variable selection procedures based on adaptive penalty are developed to select important parametric covariates as well as significant nonparametric functions. Moreover, both these two variable selection procedures are demonstrated to enjoy the oracle property under some regularity conditions. Some Monte Carlo simulations are conducted to assess the finite sample performance of the proposed estimators, and a real-data example is used to illustrate the application of the proposed methods.  相似文献   

5.
ABSTRACT

In this paper, we propose a new efficient and robust penalized estimating procedure for varying-coefficient single-index models based on modal regression and basis function approximations. The proposed procedure simultaneously solves two types of problems: separation of varying and constant effects and selection of variables with non zero coefficients for both non parametric and index components using three smoothly clipped absolute deviation (SCAD) penalties. With appropriate selection of the tuning parameters, the new method possesses the consistency in variable selection and the separation of varying and constant coefficients. In addition, the estimators of varying coefficients possess the optimal convergence rate and the estimators of constant coefficients and index parameters have the oracle property. Finally, we investigate the finite sample performance of the proposed method through a simulation study and real data analysis.  相似文献   

6.
In this paper, we study the problem of estimation and variable selection for generalised partially linear single-index models based on quasi-likelihood, extending existing studies on variable selection for partially linear single-index models to binary and count responses. To take into account the unit norm constraint of the index parameter, we use the ‘delete-one-component’ approach. The asymptotic normality of the estimates is demonstrated. Furthermore, the smoothly clipped absolute deviation penalty is added for variable selection of parameters both in the nonparametric part and the parametric part, and the oracle property of the variable selection procedure is shown. Finally, some simulation studies are carried out to illustrate the finite sample performance.  相似文献   

7.
Abstract

In this article, we propose a new penalized-likelihood method to conduct model selection for finite mixture of regression models. The penalties are imposed on mixing proportions and regression coefficients, and hence order selection of the mixture and the variable selection in each component can be simultaneously conducted. The consistency of order selection and the consistency of variable selection are investigated. A modified EM algorithm is proposed to maximize the penalized log-likelihood function. Numerical simulations are conducted to demonstrate the finite sample performance of the estimation procedure. The proposed methodology is further illustrated via real data analysis.  相似文献   

8.
In this article we present a robust and efficient variable selection procedure by using modal regression for varying-coefficient models with longitudinal data. The new method is proposed based on basis function approximations and a group version of the adaptive LASSO penalty, which can select significant variables and estimate the non-zero smooth coefficient functions simultaneously. Under suitable conditions, we establish the consistency in variable selection and the oracle property in estimation. A simulation study and two real data examples are undertaken to assess the finite sample performance of the proposed variable selection procedure.  相似文献   

9.
Abstract

In this article, we study the variable selection and estimation for linear regression models with missing covariates. The proposed estimation method is almost as efficient as the popular least-squares-based estimation method for normal random errors and empirically shown to be much more efficient and robust with respect to heavy tailed errors or outliers in the responses and covariates. To achieve sparsity, a variable selection procedure based on SCAD is proposed to conduct estimation and variable selection simultaneously. The procedure is shown to possess the oracle property. To deal with the covariates missing, we consider the inverse probability weighted estimators for the linear model when the selection probability is known or unknown. It is shown that the estimator by using estimated selection probability has a smaller asymptotic variance than that with true selection probability, thus is more efficient. Therefore, the important Horvitz-Thompson property is verified for penalized rank estimator with the covariates missing in the linear model. Some numerical examples are provided to demonstrate the performance of the estimators.  相似文献   

10.
In this article, we present a new efficient iteration estimation approach based on local modal regression for single-index varying-coefficient models. The resulted estimators are shown to be robust with regardless of outliers and error distributions. The asymptotic properties of the estimators are established under some regularity conditions and a practical modified EM algorithm is proposed for the new method. Moreover, to achieve sparse estimator when there exists irrelevant variables in the index parameters, a variable selection procedure based on SCAD penalty is developed to select significant parametric covariates and the well-known oracle properties are also derived. Finally, some numerical examples with various distributed errors and a real data analysis are conducted to illustrate the validity and feasibility of our proposed method.  相似文献   

11.
Abstract

Variable selection in finite mixture of regression (FMR) models is frequently used in statistical modeling. The majority of applications of variable selection in FMR models use a normal distribution for regression error. Such assumptions are unsuitable for a set of data containing a group or groups of observations with heavy tails and outliers. In this paper, we introduce a robust variable selection procedure for FMR models using the t distribution. With appropriate selection of the tuning parameters, the consistency and the oracle property of the regularized estimators are established. To estimate the parameters of the model, we develop an EM algorithm for numerical computations and a method for selecting tuning parameters adaptively. The parameter estimation performance of the proposed model is evaluated through simulation studies. The application of the proposed model is illustrated by analyzing a real data set.  相似文献   

12.
Abstract

In this article, we consider a panel data partially linear regression model with fixed effect and non parametric time trend function. The data can be dependent cross individuals through linear regressor and error components. Unlike the methods using non parametric smoothing technique, a difference-based method is proposed to estimate linear regression coefficients of the model to avoid bandwidth selection. Here the difference technique is employed to eliminate the non parametric function effect, not the fixed effects, on linear regressor coefficient estimation totally. Therefore, a more efficient estimator for parametric part is anticipated, which is shown to be true by the simulation results. For the non parametric component, the polynomial spline technique is implemented. The asymptotic properties of estimators for parametric and non parametric parts are presented. We also show how to select informative ones from a number of covariates in the linear part by using smoothly clipped absolute deviation-penalized estimators on a difference-based least-squares objective function, and the resulting estimators perform asymptotically as well as the oracle procedure in terms of selecting the correct model.  相似文献   

13.
One of the standard variable selection procedures in multiple linear regression is to use a penalisation technique in least‐squares (LS) analysis. In this setting, many different types of penalties have been introduced to achieve variable selection. It is well known that LS analysis is sensitive to outliers, and consequently outliers can present serious problems for the classical variable selection procedures. Since rank‐based procedures have desirable robustness properties compared to LS procedures, we propose a rank‐based adaptive lasso‐type penalised regression estimator and a corresponding variable selection procedure for linear regression models. The proposed estimator and variable selection procedure are robust against outliers in both response and predictor space. Furthermore, since rank regression can yield unstable estimators in the presence of multicollinearity, in order to provide inference that is robust against multicollinearity, we adjust the penalty term in the adaptive lasso function by incorporating the standard errors of the rank estimator. The theoretical properties of the proposed procedures are established and their performances are investigated by means of simulations. Finally, the estimator and variable selection procedure are applied to the Plasma Beta‐Carotene Level data set.  相似文献   

14.
As a flexible alternative to the Cox model, the accelerated failure time (AFT) model assumes that the event time of interest depends on the covariates through a regression function. The AFT model with non‐parametric covariate effects is investigated, when variable selection is desired along with estimation. Formulated in the framework of the smoothing spline analysis of variance model, the proposed method based on the Stute estimate ( Stute, 1993 [Consistent estimation under random censorship when covariables are present, J. Multivariate Anal. 45 , 89–103]) can achieve a sparse representation of the functional decomposition, by utilizing a reproducing kernel Hilbert norm penalty. Computational algorithms and theoretical properties of the proposed method are investigated. The finite sample size performance of the proposed approach is assessed via simulation studies. The primary biliary cirrhosis data is analyzed for demonstration.  相似文献   

15.
We consider a partially linear model with diverging number of groups of parameters in the parametric component. The variable selection and estimation of regression coefficients are achieved simultaneously by using the suitable penalty function for covariates in the parametric component. An MM-type algorithm for estimating parameters without inverting a high-dimensional matrix is proposed. The consistency and sparsity of penalized least-squares estimators of regression coefficients are discussed under the setting of some nonzero regression coefficients with very small values. It is found that the root pn/n-consistency and sparsity of the penalized least-squares estimators of regression coefficients cannot be given consideration simultaneously when the number of nonzero regression coefficients with very small values is unknown, where pn and n, respectively, denote the number of regression coefficients and sample size. The finite sample behaviors of penalized least-squares estimators of regression coefficients and the performance of the proposed algorithm are studied by simulation studies and a real data example.  相似文献   

16.
In this article, the problem of parameter estimation and variable selection in the Tobit quantile regression model is considered. A Tobit quantile regression with the elastic net penalty from a Bayesian perspective is proposed. Independent gamma priors are put on the l1 norm penalty parameters. A novel aspect of the Bayesian elastic net Tobit quantile regression is to treat the hyperparameters of the gamma priors as unknowns and let the data estimate them along with other parameters. A Bayesian Tobit quantile regression with the adaptive elastic net penalty is also proposed. The Gibbs sampling computational technique is adapted to simulate the parameters from the posterior distributions. The proposed methods are demonstrated by both simulated and real data examples.  相似文献   

17.
ABSTRACT

Background: Many exposures in epidemiological studies have nonlinear effects and the problem is to choose an appropriate functional relationship between such exposures and the outcome. One common approach is to investigate several parametric transformations of the covariate of interest, and to select a posteriori the function that fits the data the best. However, such approach may result in an inflated Type I error. Methods: Through a simulation study, we generated data from Cox's models with different transformations of a single continuous covariate. We investigated the Type I error rate and the power of the likelihood ratio test (LRT) corresponding to three different procedures that considered the same set of parametric dose-response functions. The first unconditional approach did not involve any model selection, while the second conditional approach was based on a posteriori selection of the parametric function. The proposed third approach was similar to the second except that it used a corrected critical value for the LRT to ensure a correct Type I error. Results: The Type I error rate of the second approach was two times higher than the nominal size. For simple monotone dose-response, the corrected test had similar power as the unconditional approach, while for non monotone, dose-response, it had a higher power. A real-life application that focused on the effect of body mass index on the risk of coronary heart disease death, illustrated the advantage of the proposed approach. Conclusion: Our results confirm that a posteriori selecting the functional form of the dose-response induces a Type I error inflation. The corrected procedure, which can be applied in a wide range of situations, may provide a good trade-off between Type I error and power.  相似文献   

18.
ABSTRACT

A variable selection procedure based on least absolute deviation (LAD) estimation and adaptive lasso (LAD-Lasso for short) is proposed for median regression models with doubly censored data. The proposed procedure can select significant variables and estimate the parameters simultaneously, and the resulting estimators enjoy the oracle property. Simulation results show that the proposed method works well.  相似文献   

19.
We consider variable selection in linear regression of geostatistical data that arise often in environmental and ecological studies. A penalized least squares procedure is studied for simultaneous variable selection and parameter estimation. Various penalty functions are considered including smoothly clipped absolute deviation. Asymptotic properties of penalized least squares estimates, particularly the oracle properties, are established, under suitable regularity conditions imposed on a random field model for the error process. Moreover, computationally feasible algorithms are proposed for estimating regression coefficients and their standard errors. Finite‐sample properties of the proposed methods are investigated in a simulation study and comparison is made among different penalty functions. The methods are illustrated by an ecological dataset of landcover in Wisconsin. The Canadian Journal of Statistics 37: 607–624; 2009 © 2009 Statistical Society of Canada  相似文献   

20.
We consider the problem of variable selection in high-dimensional partially linear models with longitudinal data. A variable selection procedure is proposed based on the smooth-threshold generalized estimating equation (SGEE). The proposed procedure automatically eliminates inactive predictors by setting the corresponding parameters to be zero, and simultaneously estimates the nonzero regression coefficients by solving the SGEE. We establish the asymptotic properties in a high-dimensional framework where the number of covariates pn increases as the number of clusters n increases. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号