首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
This article is concerned with making predictive inference on the basis of a doubly censored sample from a two-parameter Rayleigh life model. We derive the predictive distributions for a single future response, the ith future response, and several future responses. We use the Bayesian approach in conjunction with an improper flat prior for the location parameter and an independent proper conjugate prior for the scale parameter to derive the predictive distributions. We conclude with a numerical example in which the effect of the hyperparameters on the mean and standard deviation of the predictive density is assessed.  相似文献   

2.
It is well known that parameter estimates and forecasts are sensitive to assumptions about the tail behavior of the error distribution. In this article, we develop an approach to sequential inference that also simultaneously estimates the tail of the accompanying error distribution. Our simulation-based approach models errors with a tν-distribution and, as new data arrives, we sequentially compute the marginal posterior distribution of the tail thickness. Our method naturally incorporates fat-tailed error distributions and can be extended to other data features such as stochastic volatility. We show that the sequential Bayes factor provides an optimal test of fat-tails versus normality. We provide an empirical and theoretical analysis of the rate of learning of tail thickness under a default Jeffreys prior. We illustrate our sequential methodology on the British pound/U.S. dollar daily exchange rate data and on data from the 2008–2009 credit crisis using daily S&P500 returns. Our method naturally extends to multivariate and dynamic panel data.  相似文献   

3.
Lin  Tsung I.  Lee  Jack C.  Ni  Huey F. 《Statistics and Computing》2004,14(2):119-130
A finite mixture model using the multivariate t distribution has been shown as a robust extension of normal mixtures. In this paper, we present a Bayesian approach for inference about parameters of t-mixture models. The specifications of prior distributions are weakly informative to avoid causing nonintegrable posterior distributions. We present two efficient EM-type algorithms for computing the joint posterior mode with the observed data and an incomplete future vector as the sample. Markov chain Monte Carlo sampling schemes are also developed to obtain the target posterior distribution of parameters. The advantages of Bayesian approach over the maximum likelihood method are demonstrated via a set of real data.  相似文献   

4.
ABSTRACT

The display of the data by means of contingency tables is used in different approaches to statistical inference, for example, to broach the test of homogeneity of independent multinomial distributions. We develop a Bayesian procedure to test simple null hypotheses versus bilateral alternatives in contingency tables. Given independent samples of two binomial distributions and taking a mixed prior distribution, we calculate the posterior probability that the proportion of successes in the first population is the same as in the second. This posterior probability is compared with the p-value of the classical method, obtaining a reconciliation between both results, classical and Bayesian. The obtained results are generalized for r × s tables.  相似文献   

5.
We consider causal inference in randomized studies for survival data with a cure fraction and all-or-none treatment non compliance. To describe the causal effects, we consider the complier average causal effect (CACE) and the complier effect on survival probability beyond time t (CESP), where CACE and CESP are defined as the difference of cure rate and non cured subjects’ survival probability between treatment and control groups within the complier class. These estimands depend on the distributions of survival times in treatment and control groups. Given covariates and latent compliance type, we model these distributions with transformation promotion time cure model whose parameters are estimated by maximum likelihood. Both the infinite dimensional parameter in the model and the mixture structure of the problem create some computational difficulties which are overcome by an expectation-maximization (EM) algorithm. We show the estimators are consistent and asymptotically normal. Some simulation studies are conducted to assess the finite-sample performance of the proposed approach. We also illustrate our method by analyzing a real data from the Healthy Insurance Plan of Greater New York.  相似文献   

6.
ABSTRACT

In this paper, the stress-strength reliability, R, is estimated in type II censored samples from Pareto distributions. The classical inference includes obtaining the maximum likelihood estimator, an exact confidence interval, and the confidence intervals based on Wald and signed log-likelihood ratio statistics. Bayesian inference includes obtaining Bayes estimator, equi-tailed credible interval, and highest posterior density (HPD) interval given both informative and non-informative prior distributions. Bayes estimator of R is obtained using four methods: Lindley's approximation, Tierney-Kadane method, Monte Carlo integration, and MCMC. Also, we compare the proposed methods by simulation study and provide a real example to illustrate them.  相似文献   

7.
Abstract. The modelling process in Bayesian Statistics constitutes the fundamental stage of the analysis, since depending on the chosen probability laws the inferences may vary considerably. This is particularly true when conflicts arise between two or more sources of information. For instance, inference in the presence of an outlier (which conflicts with the information provided by the other observations) can be highly dependent on the assumed sampling distribution. When heavy‐tailed (e.g. t) distributions are used, outliers may be rejected whereas this kind of robust inference is not available when we use light‐tailed (e.g. normal) distributions. A long literature has established sufficient conditions on location‐parameter models to resolve conflict in various ways. In this work, we consider a location–scale parameter structure, which is more complex than the single parameter cases because conflicts can arise between three sources of information, namely the likelihood, the prior distribution for the location parameter and the prior for the scale parameter. We establish sufficient conditions on the distributions in a location–scale model to resolve conflicts in different ways as a single observation tends to infinity. In addition, for each case, we explicitly give the limiting posterior distributions as the conflict becomes more extreme.  相似文献   

8.
In this article we introduce a new generalization of skew-t distributions, which contains the standard skew-t distribution, as a special case. This new class of distributions is an adequate model for modeling some dataset rather than the standard skew-t distributions. This kind of distributions can be represented as a scale-shape mixture of the extended skew-normal distributions. The main properties of this family of distributions are studied and a recurrence relation for the cumulative distribution functions (cdf) of them is presented. We derive the distribution of the order statistics from the trivariate exchangeable t-distribution in terms of our distribution and then an exact expression for the cdf of order statistics is derived. Likelihood inference for this distribution is also examined. The method is illustrated with a numerical example via a simulation study.  相似文献   

9.
Linear mixed models are widely used when multiple correlated measurements are made on each unit of interest. In many applications, the units may form several distinct clusters, and such heterogeneity can be more appropriately modelled by a finite mixture linear mixed model. The classical estimation approach, in which both the random effects and the error parts are assumed to follow normal distribution, is sensitive to outliers, and failure to accommodate outliers may greatly jeopardize the model estimation and inference. We propose a new mixture linear mixed model using multivariate t distribution. For each mixture component, we assume the response and the random effects jointly follow a multivariate t distribution, to conveniently robustify the estimation procedure. An efficient expectation conditional maximization algorithm is developed for conducting maximum likelihood estimation. The degrees of freedom parameters of the t distributions are chosen data adaptively, for achieving flexible trade-off between estimation robustness and efficiency. Simulation studies and an application on analysing lung growth longitudinal data showcase the efficacy of the proposed approach.  相似文献   

10.
In this paper, we seek to establish asymptotic results for selective inference procedures removing the assumption of Gaussianity. The class of selection procedures we consider are determined by affine inequalities, which we refer to as affine selection procedures. Examples of affine selection procedures include selective inference along the solution path of the least absolute shrinkage and selection operator (LASSO), as well as selective inference after fitting the least absolute shrinkage and selection operator at a fixed value of the regularization parameter. We also consider some tests in penalized generalized linear models. Our result proves asymptotic convergence in the high‐dimensional setting where n<p, and n can be of a logarithmic factor of the dimension p for some procedures.  相似文献   

11.
The Lasso has sparked interest in the use of penalization of the log‐likelihood for variable selection, as well as for shrinkage. We are particularly interested in the more‐variables‐than‐observations case of characteristic importance for modern data. The Bayesian interpretation of the Lasso as the maximum a posteriori estimate of the regression coefficients, which have been given independent, double exponential prior distributions, is adopted. Generalizing this prior provides a family of hyper‐Lasso penalty functions, which includes the quasi‐Cauchy distribution of Johnstone and Silverman as a special case. The properties of this approach, including the oracle property, are explored, and an EM algorithm for inference in regression problems is described. The posterior is multi‐modal, and we suggest a strategy of using a set of perfectly fitting random starting values to explore modes in different regions of the parameter space. Simulations show that our procedure provides significant improvements on a range of established procedures, and we provide an example from chemometrics.  相似文献   

12.
ABSTRACT

This paper deals with Bayes, robust Bayes, and minimax predictions in a subfamily of scale parameters under an asymmetric precautionary loss function. In Bayesian statistical inference, the goal is to obtain optimal rules under a specified loss function and an explicit prior distribution over the parameter space. However, in practice, we are not able to specify the prior totally or when a problem must be solved by two statisticians, they may agree on the choice of the prior but not the values of the hyperparameters. A common approach to the prior uncertainty in Bayesian analysis is to choose a class of prior distributions and compute some functional quantity. This is known as Robust Bayesian analysis which provides a way to consider the prior knowledge in terms of a class of priors Γ for global prevention against bad choices of hyperparameters. Under a scale invariant precautionary loss function, we deal with robust Bayes predictions of Y based on X. We carried out a simulation study and a real data analysis to illustrate the practical utility of the prediction procedure.  相似文献   

13.
Linear mixed models based on the normality assumption are widely used in health related studies. Although the normality assumption leads to simple, mathematically tractable, and powerful tests, violation of the assumption may easily invalidate the statistical inference. Transformation of variables is sometimes used to make normality approximately true. In this paper we consider another approach by replacing the normal distributions in linear mixed models by skew-t distributions, which account for skewness and heavy tails for both the random effects and the errors. The full likelihood-based estimator is often difficult to use, but a 3-step estimation procedure is proposed, followed by an application to the analysis of deglutition apnea duration in normal swallows. The example shows that skew-t models often entail more reliable inference than Gaussian models for the skewed data.  相似文献   

14.
In this paper, we study the statistical inference based on the Bayesian approach for regression models with the assumption that independent additive errors follow normal, Student-t, slash, contaminated normal, Laplace or symmetric hyperbolic distribution, where both location and dispersion parameters of the response variable distribution include nonparametric additive components approximated by B-splines. This class of models provides a rich set of symmetric distributions for the model error. Some of these distributions have heavier or lighter tails than the normal as well as different levels of kurtosis. In order to draw samples of the posterior distribution of the interest parameters, we propose an efficient Markov Chain Monte Carlo (MCMC) algorithm, which combines Gibbs sampler and Metropolis–Hastings algorithms. The performance of the proposed MCMC algorithm is assessed through simulation experiments. We apply the proposed methodology to a real data set. The proposed methodology is implemented in the R package BayesGESM using the function gesm().  相似文献   

15.
We proposed two simple moment-based procedures, one with (GCCC1) and one without (GCCC2) normality assumptions, to generalize the inference of concordance correlation coefficient for the evaluation of agreement among multiple observers for measurements on a continuous scale. A modified Fisher's Z-transformation was adapted to further improve the inference. We compared the proposed methods with U-statistic-based inference approach. Simulation analysis showed desirable statistical properties of the simplified approach GCCC1, in terms of coverage probabilities and coverage balance, especially for small samples. GCCC2, which is distribution-free, behaved comparably with the U-statistic-based procedure, but had a more intuitive and explicit variance estimator. The utility of these approaches were illustrated using two clinical data examples.  相似文献   

16.
This study takes up inference in linear models with generalized error and generalized t distributions. For the generalized error distribution, two computational algorithms are proposed. The first is based on indirect Bayesian inference using an approximating finite scale mixture of normal distributions. The second is based on Gibbs sampling. The Gibbs sampler involves only drawing random numbers from standard distributions. This is important because previously the impression has been that an exact analysis of the generalized error regression model using Gibbs sampling is not possible. Next, we describe computational Bayesian inference for linear models with generalized t disturbances based on Gibbs sampling, and exploiting the fact that the model is a mixture of generalized error distributions with inverse generalized gamma distributions for the scale parameter. The linear model with this specification has also been thought not to be amenable to exact Bayesian analysis. All computational methods are applied to actual data involving the exchange rates of the British pound, the French franc, and the German mark relative to the U.S. dollar.  相似文献   

17.
ABSTRACT

In this paper, we consider an effective Bayesian inference for censored Student-t linear regression model, which is a robust alternative to the usual censored Normal linear regression model. Based on the mixture representation of the Student-t distribution, we propose a non-iterative Bayesian sampling procedure to obtain independently and identically distributed samples approximately from the observed posterior distributions, which is different from the iterative Markov Chain Monte Carlo algorithm. We conduct model selection and influential analysis using the posterior samples to choose the best fitted model and to detect latent outliers. We illustrate the performance of the procedure through simulation studies, and finally, we apply the procedure to two real data sets, one is the insulation life data with right censoring and the other is the wage rates data with left censoring, and we get some interesting results.  相似文献   

18.
Factor analysis of multivariate spatial data is considered. A systematic approach for modeling the underlying structure of potentially irregularly spaced, geo-referenced vector observations is proposed. Statistical inference procedures for selecting the number of factors and for model building are discussed. We derive a condition under which a simple and practical inference procedure is valid without specifying the form of distributions and factor covariance functions. The multivariate prediction problem is also discussed, and a procedure combining the latent variable modeling and a measurement-error-free kriging technique is introduced. Simulation results and an example using agricultural data are presented.  相似文献   

19.
While most regression models focus on explaining distributional aspects of one single response variable alone, interest in modern statistical applications has recently shifted towards simultaneously studying multiple response variables as well as their dependence structure. A particularly useful tool for pursuing such an analysis are copula-based regression models since they enable the separation of the marginal response distributions and the dependence structure summarised in a specific copula model. However, so far copula-based regression models have mostly been relying on two-step approaches where the marginal distributions are determined first whereas the copula structure is studied in a second step after plugging in the estimated marginal distributions. Moreover, the parameters of the copula are mostly treated as a constant not related to covariates and most regression specifications for the marginals are restricted to purely linear predictors. We therefore propose simultaneous Bayesian inference for both the marginal distributions and the copula using computationally efficient Markov chain Monte Carlo simulation techniques. In addition, we replace the commonly used linear predictor by a generic structured additive predictor comprising for example nonlinear effects of continuous covariates, spatial effects or random effects and furthermore allow to make the copula parameters covariate-dependent. To facilitate Bayesian inference, we construct proposal densities for a Metropolis–Hastings algorithm relying on quadratic approximations to the full conditionals of regression coefficients avoiding manual tuning. The performance of the resulting Bayesian estimates is evaluated in simulations comparing our approach with penalised likelihood inference, studying the choice of a specific copula model based on the deviance information criterion, and comparing a simultaneous approach with a two-step procedure. Furthermore, the flexibility of Bayesian conditional copula regression models is illustrated in two applications on childhood undernutrition and macroecology.  相似文献   

20.
Very often, in psychometric research, as in educational assessment, it is necessary to analyze item response from clustered respondents. The multiple group item response theory (IRT) model proposed by Bock and Zimowski [12] provides a useful framework for analyzing such type of data. In this model, the selected groups of respondents are of specific interest such that group-specific population distributions need to be defined. The usual assumption for parameter estimation in this model, which is that the latent traits are random variables following different symmetric normal distributions, has been questioned in many works found in the IRT literature. Furthermore, when this assumption does not hold, misleading inference can result. In this paper, we consider that the latent traits for each group follow different skew-normal distributions, under the centered parameterization. We named it skew multiple group IRT model. This modeling extends the works of Azevedo et al. [4], Bazán et al. [11] and Bock and Zimowski [12] (concerning the latent trait distribution). Our approach ensures that the model is identifiable. We propose and compare, concerning convergence issues, two Monte Carlo Markov Chain (MCMC) algorithms for parameter estimation. A simulation study was performed in order to evaluate parameter recovery for the proposed model and the selected algorithm concerning convergence issues. Results reveal that the proposed algorithm recovers properly all model parameters. Furthermore, we analyzed a real data set which presents asymmetry concerning the latent traits distribution. The results obtained by using our approach confirmed the presence of negative asymmetry for some latent trait distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号