首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper introduces a new variant of Nim game, the Greedy Nim\(_\mathrm{{k}}\) Game. We present a complete solution for this game.  相似文献   

2.
3.
In the paper we study \(\lambda \) -numbers of several classes of snarks. We show that the \(\lambda \) -number of each Blanu \(\breve{s}\) a snark, Flower snark and Goldberg snark is \(6\) . For \(n\ge 2\) , we show that there is a dot product of \(n\) Petersen graphs such that its \(\lambda \) -number is 6.  相似文献   

4.
5.
Conflict graph is a union of finite given sets of disjoint complete multipartite graphs. Vertex cover on this kind of graph is used first to model data inconsistency problems in database application. It is NP-complete if the number of given sets r is fixed, and can be approximated within \(2-\frac{1}{2^r}\) (Miao et al. in Proceedings of the 9th international conference on combinatorial optimization and applications, vol 9486. COCOA 2015, New York. Springer, New York, pp 395–408, 2015). This paper shows a better algorithm to improve the approximation for dense cases. If the ratio of vertex not belongs to any wheel complete multipartite graph is no more than \(\beta <1\), then our algorithm will provide a \((1+\beta +\frac{1-\beta }{k})\)-approximation, where k is a parameter related to degree distribution of wheel complete multipartite graph.  相似文献   

6.
7.
8.
An arc in \(\mathbb Z^2_n\) is defined to be a set of points no three of which are collinear. We describe some properties of arcs and determine the maximum size of arcs for some small n.  相似文献   

9.
The paper is devoted to value concepts for cooperative games with a communication structure represented by a graph. Under assumptions that the players partition themselves into ‘components’ before realizing cooperation and the worth of the grand coalition not less than the sum of the worths of all components, the fair distribution of surplus solution and the two-step \(\tau \)-value are introduced as two efficient values for such games, each of which is an extension of the graph \(\tau \)-value. For the two efficient values, we discuss their special properties and we provide their axiomatic characterizations in views of those properties. By analysing an example applied to the two values, we conclude that the fair distribution of surplus solution allocates more surplus to the bigger coalitions and favors the powerful players, while the two-step \(\tau \)-value benefits the vulnerable groups and inspires to form small coalitions.  相似文献   

10.
Journal of Combinatorial Optimization - In this paper, we study the general restricted inverse assignment problems, in which we can only change the costs of some specific edges of an assignment...  相似文献   

11.
Let \(\chi _2(G)\) and \(\chi _2^l(G)\) be the 2-distance chromatic number and list 2-distance chromatic number of a graph G, respectively. Wegner conjectured that for each planar graph G with maximum degree \(\varDelta \) at least 4, \(\chi _2(G)\le \varDelta +5\) if \(4\le \varDelta \le 7\), and \(\chi _2(G)\le \lfloor \frac{3\varDelta }{2}\rfloor +1\) if \(\varDelta \ge 8\). Let G be a planar graph without 4,5-cycles. We show that if \(\varDelta \ge 26\), then \(\chi _2^l(G)\le \varDelta +3\). There exist planar graphs G with girth \(g(G)=6\) such that \(\chi _2^l(G)=\varDelta +2\) for arbitrarily large \(\varDelta \). In addition, we also discuss the list L(2, 1)-labeling number of G, and prove that \(\lambda _l(G)\le \varDelta +8\) for \(\varDelta \ge 27\).  相似文献   

12.
Let \(G = (V,E)\) be a finite graph and let \((\mathbb {A},+)\) be an abelian group with identity 0. Then G is \(\mathbb {A}\)-magic if and only if there exists a function \(\phi \) from E into \(\mathbb {A} - \{0\}\) such that for some \(c \in \mathbb {A}, \sum _{e \in E(v)} \phi (e) = c\) for every \(v \in V\), where E(v) is the set of edges incident to v. Additionally, G is zero-sum \(\mathbb {A}\)-magic if and only if \(\phi \) exists such that \(c = 0\). We consider zero-sum \(\mathbb {A}\)-magic labelings of graphs, with particular attention given to \(\mathbb {A} = \mathbb {Z}_{2j}^k\). For \(j \ge 1\), let \(\zeta _{2j}(G)\) be the smallest positive integer c such that G is zero-sum \(\mathbb {Z}_{2j}^c\)-magic if c exists; infinity otherwise. We establish upper bounds on \(\zeta _{2j}(G)\) when \(\zeta _{2j}(G)\) is finite, and show that \(\zeta _{2j}(G)\) is finite for all r-regular \(G, r \ge 2\). Appealing to classical results on the factors of cubic graphs, we prove that \(\zeta _4(G) \le 2\) for a cubic graph G, with equality if and only if G has no 1-factor. We discuss the problem of classifying cubic graphs according to the collection of finite abelian groups for which they are zero-sum group-magic.  相似文献   

13.
Detecting abnormal events is one of the fundamental issues in wireless sensor networks (WSNs). In this paper, we investigate \((\alpha ,\tau )\)-monitoring in WSNs. For a given monitored threshold \(\alpha \), we prove that (i) the tight upper bound of \(\Pr [{S(t)} \ge \alpha ]\) is \(O\left( {\exp \left\{ { - n\ell \left( {\frac{\alpha }{{nsup}},\frac{{\mu (t)}}{{nsup}}} \right) } \right\} } \right) \), if \(\mu (t) < \alpha \); and (ii) the tight upper bound of \(\Pr [{S(t)} \le \alpha ]\) is \(O\left( {\exp \left\{ { - n\ell \left( {\frac{\alpha }{{nsup}},\frac{{\mu (t)}}{{nsup}}} \right) } \right\} } \right) \), if \(\mu (t) > \alpha \), where \(\Pr [X]\) is the probability of random event \(X,\, S(t)\) is the sum of the monitored area at time \(t,\, n\) is the number of the sensor nodes, \(sup\) is the upper bound of sensed data, \( \mu (t)\) is the expectation of \(S(t)\), and \(\ell ({x_1},{x_2}) = {x_1}\ln \left( {\frac{{{x_1}}}{{{x_2}}}} \right) + (1 - {x_1})\ln \left( {\frac{{1 - {x_1}}}{{1 - {x_2}}}} \right) \). An instant \((\alpha ,\tau )\)-monitoring scheme is then developed based on the upper bound. Moreover, approximate continuous \((\alpha , \tau )\)-monitoring is investigated. We prove that the probability of false negative alarm is \(\delta \), if the sample size is Open image in new window for a given precision requirement, where Open image in new window is the Open image in new window fractile of a standard normal distribution. Finally, the performance of the proposed algorithms is validated through experiments.  相似文献   

14.
Let \(G=(V,E)\) be a nonempty graph and \(\xi :E\rightarrow \mathbb {N}\) be a function. In the paper we study the computational complexity of the problem of finding vertex colorings \(c\) of \(G\) such that:
  1. (1)
    \(|c(u)-c(v)|\ge \xi (uv)\) for each edge \(uv\in E\);
     
  2. (2)
    the edge span of \(c\), i.e. \(\max \{|c(u)-c(v)|:uv\in E\}\), is minimal.
     
We show that the problem is NP-hard for subcubic outerplanar graphs of a very simple structure (similar to cycles) and polynomially solvable for cycles and bipartite graphs. Next, we use the last two results to construct an algorithm that solves the problem for a given cactus \(G\) in \(O(n\log n)\) time, where \(n\) is the number of vertices of \(G\).
  相似文献   

15.
A (proper) total-k-coloring of a graph G is a mapping \(\phi : V (G) \cup E(G)\mapsto \{1, 2, \ldots , k\}\) such that any two adjacent elements in \(V (G) \cup E(G)\) receive different colors. Let C(v) denote the set of the color of a vertex v and the colors of all incident edges of v. A total-k-adjacent vertex distinguishing-coloring of G is a total-k-coloring of G such that for each edge \(uv\in E(G)\), \(C(u)\ne C(v)\). We denote the smallest value k in such a coloring of G by \(\chi ''_{a}(G)\). It is known that \(\chi _{a}''(G)\le \Delta (G)+3\) for any planar graph with \(\Delta (G)\ge 11\). In this paper, we show that if G is a planar graph with \(\Delta (G)\ge 10\), then \(\chi _{a}''(G)\le \Delta (G)+3\). Our approach is based on Combinatorial Nullstellensatz and the discharging method.  相似文献   

16.
For \(S\subseteq G\), let \(\kappa (S)\) denote the maximum number r of edge-disjoint trees \(T_1, T_2, \ldots , T_r\) in G such that \(V(T_i)\cap V(T_j)=S\) for any \(i,j\in \{1,2,\ldots ,r\}\) and \(i\ne j\). For every \(2\le k\le n\), the k-connectivity of G, denoted by \(\kappa _k(G)\), is defined as \(\kappa _k(G)=\hbox {min}\{\kappa (S)| S\subseteq V(G)\ and\ |S|=k\}\). Clearly, \(\kappa _2(G)\) corresponds to the traditional connectivity of G. In this paper, we focus on the structure of minimally 2-connected graphs with \(\kappa _{3}=2\). Denote by \(\mathcal {H}\) the set of minimally 2-connected graphs with \(\kappa _{3}=2\). Let \(\mathcal {B}\subseteq \mathcal {H}\) and every graph in \(\mathcal {B}\) is either \(K_{2,3}\) or the graph obtained by subdividing each edge of a triangle-free 3-connected graph. We obtain that \(H\in \mathcal {H}\) if and only if \(H\in \mathcal {B}\) or H can be constructed from one or some graphs \(H_{1},\ldots ,H_{k}\) in \(\mathcal {B}\) (\(k\ge 1\)) by applying some operations recursively.  相似文献   

17.
18.
In this paper, we study the antenna orientation problem concerning symmetric connectivity in directional wireless sensor networks. We are given a set of nodes each of which is equipped with one directional antenna with beam-width \(\theta = 2\pi /3\) and is initially assigned a transmission range 1 that yields a connected unit disk graph spanning all nodes. The objective of the problem is to compute an orientation of the antennas and to find a minimum transmission power range \(r=O(1)\) such that the induced symmetric communication graph is connected. We propose two algorithms that orient the antennas to yield symmetric connected communication graphs where the transmission power ranges are bounded by 6 and 5, which are currently the best results for this problem. We also study the performance of our algorithms through simulations.  相似文献   

19.
Journal of Combinatorial Optimization - Let $$\Gamma =\Gamma (V, E)$$ be a simple (multiple edges and loops are not considered), connected (every pair of distinct vertices are joined by a path),...  相似文献   

20.
A k-(2, 1)-total labelling of a graph G is a mapping \(f: V(G)\cup E(G)\rightarrow \{0,1,\ldots ,k\}\) such that adjacent vertices or adjacent edges receive distinct labels, and a vertex and its incident edges receive labels that differ in absolute value by at least 2. The (2, 1)-total number, denoted \(\lambda _2^t(G)\), is the minimum k such that G has a k-(2, 1)-total labelling. Let T be a tree with maximum degree \(\Delta \ge 7\). A vertex \(v\in V(T)\) is called major if \(d(v)=\Delta \), minor if \(d(v)<\Delta \), and saturated if v is major and is adjacent to exactly \(\Delta - 2\) major vertices. It is known that \(\Delta + 1 \le \lambda _2^t(T)\le \Delta + 2\). In this paper, we prove that if every major vertex is adjacent to at most \(\Delta -2\) major vertices, and every minor vertex is adjacent to at most three saturated vertices, then \(\lambda _2^t(T) = \Delta + 1\). The result is best possible with respect to these required conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号