首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a connected graph \(G = \left( V,E\right) \), a set \(S\subseteq E(G)\) is called a total edge-to-vertex monophonic set of a connected graph G if the subgraph induced by S has no isolated edges. The total edge-to-vertex monophonic number \(m_{tev}(G)\) of G is the minimum cardinality of its total edge-to-vertex monophonic set of G. The total edge-to-vertex monophonic number of certain classes of graphs is determined and some of its general properties are studied. Connected graphs of size \(q \ge 3 \) with total edge-to-vertex monophonic number q is characterized. It is shown that for positive integers \(r_{m},d_{m}\) and \(l\ge 4\) with \(r_{m}< d_{m} \le 2 r_{m}\), there exists a connected graph G with \(\textit{rad}_ {m} G = r_{m}\), \(\textit{diam}_ {m} G = d_{m}\) and \(m_{tev}(G) = l\) and also shown that for every integers a and b with \(2 \le a \le b\), there exists a connected graph G such that \( m_{ev}\left( G\right) = b\) and \(m_{tev}(G) = a + b\). A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing total edge-to-vertex monophonic number of S, denoted by \(f_{tev}(S)\) is the cardinality of a minimum forcing subset of S. The forcing total edge-to-vertex monophonic number of G, denoted by \(f_{tev}(G) = \textit{min}\{f_{tev}(S)\}\), where the minimum is taken over all total edge-to-vertex monophonic set S in G. The forcing total edge-to-vertex monophonic number of certain classes of graphs are determined and some of its general properties are studied. It is shown that for every integers a and b with \(0 \le a \le b\) and \(b \ge 2\), there exists a connected graph G such that \(f_{tev}(G) = a\) and \( m _{tev}(G) = b\), where \( f _{tev}(G)\) is the forcing total edge-to-vertex monophonic number of G.  相似文献   

2.
Given a vertex-weighted undirected connected graph \(G = (V, E, \ell , \rho )\), where each edge \(e \in E\) has a length \(\ell (e) > 0\) and each vertex \(v \in V\) has a weight \(\rho (v) > 0\), a subset \(T \subseteq V\) of vertices and a set S containing all the points on edges in a subset \(E' \subseteq E\) of edges, the generalized absolute 1-center problem (GA1CP), an extension of the classic vertex-weighted absolute 1-center problem (A1CP), asks to find a point from S such that the longest weighted shortest path distance in G from it to T is minimized. This paper presents a simple FPTAS for GA1CP by traversing the edges in \(E'\) using a positive real number as step size. The FPTAS takes \(O( |E| |V| + |V|^2 \log \log |V| + \frac{1}{\epsilon } |E'| |T| {\mathcal {R}})\) time, where \({\mathcal {R}}\) is an input parameter size of the problem instance, for any given \(\epsilon > 0\). For instances with a small input parameter size \({\mathcal {R}}\), applying the FPTAS with \(\epsilon = \Theta (1)\) to the classic vertex-weighted A1CP can produce a \((1 + \Theta (1))\)-approximation in at most O(|E| |V|) time when the distance matrix is known and \(O(|E| |V| + |V|^2 \log \log |V|)\) time when the distance matrix is unknown, which are smaller than Kariv and Hakimi’s \(O(|E| |V| \log |V|)\)-time algorithm and \(O(|E| |V| \log |V| + |V|^3)\)-time algorithm, respectively.  相似文献   

3.
A paired-dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching, while the paired-domination number is the minimum cardinality of a paired-dominating set in the graph, denoted by \(\gamma _{pr}(G)\). Let G be a connected \(\{K_{1,3}, K_{4}-e\}\)-free cubic graph of order n. We show that \(\gamma _{pr}(G)\le \frac{10n+6}{27}\) if G is \(C_{4}\)-free and that \(\gamma _{pr}(G)\le \frac{n}{3}+\frac{n+6}{9(\lceil \frac{3}{4}(g_o+1)\rceil +1)}\) if G is \(\{C_{4}, C_{6}, C_{10}, \ldots , C_{2g_o}\}\)-free for an odd integer \(g_o\ge 3\); the extremal graphs are characterized; we also show that if G is a 2 -connected, \(\gamma _{pr}(G) = \frac{n}{3} \). Furthermore, if G is a connected \((2k+1)\)-regular \(\{K_{1,3}, K_4-e\}\)-free graph of order n, then \(\gamma _{pr}(G)\le \frac{n}{k+1} \), with equality if and only if \(G=L(F)\), where \(F\cong K_{1, 2k+2}\), or k is even and \(F\cong K_{k+1,k+2}\).  相似文献   

4.
Let \(G=(V, E)\) be a simple graph and denote the set of edges incident to a vertex v by E(v). The neighbor sum distinguishing (NSD) total choice number of G, denoted by \(\mathrm{ch}_{\Sigma }^{t}(G)\), is the smallest integer k such that, after assigning each \(z\in V\cup E\) a set L(z) of k real numbers, G has a total coloring \(\phi \) satisfying \(\phi (z)\in L(z)\) for each \(z\in V\cup E\) and \(\sum _{z\in E(u)\cup \{u\}}\phi (z)\ne \sum _{z\in E(v)\cup \{v\}}\phi (z)\) for each \(uv\in E\). In this paper, we propose some reducible configurations of NSD list total coloring for general graphs by applying the Combinatorial Nullstellensatz. As an application, we present that \(\mathrm{ch}^{t}_{\Sigma }(G)\le \Delta (G)+3\) for every subcubic graph G.  相似文献   

5.
A starlike tree is a tree with exactly one vertex of degree greater than two. The spectral radius of a graph G, that is denoted by \(\lambda (G)\), is the largest eigenvalue of G. Let k and \(n_1,\ldots ,n_k\) be some positive integers. Let \(T(n_1,\ldots ,n_k)\) be the tree T (T is a path or a starlike tree) such that T has a vertex v so that \(T{\setminus } v\) is the disjoint union of the paths \(P_{n_1-1},\ldots ,P_{n_k-1}\) where every neighbor of v in T has degree one or two. Let \(P=(p_1,\ldots ,p_k)\) and \(Q=(q_1,\ldots ,q_k)\), where \(p_1\ge \cdots \ge p_k\ge 1\) and \(q_1\ge \cdots \ge q_k\ge 1\) are integer. We say P majorizes Q and let \(P\succeq _M Q\), if for every j, \(1\le j\le k\), \(\sum _{i=1}^{j}p_i\ge \sum _{i=1}^{j}q_i\), with equality if \(j=k\). In this paper we show that if P majorizes Q, that is \((p_1,\ldots ,p_k)\succeq _M(q_1,\ldots ,q_k)\), then \(\lambda (T(q_1,\ldots ,q_k))\ge \lambda (T(p_1,\ldots ,p_k))\).  相似文献   

6.
A complete graph is the graph in which every two vertices are adjacent. For a graph \(G=(V,E)\), the complete width of G is the minimum k such that there exist k independent sets \(\mathtt {N}_i\subseteq V\), \(1\le i\le k\), such that the graph \(G'\) obtained from G by adding some new edges between certain vertices inside the sets \(\mathtt {N}_i\), \(1\le i\le k\), is a complete graph. The complete width problem is to decide whether the complete width of a given graph is at most k or not. In this paper we study the complete width problem. We show that the complete width problem is NP-complete on \(3K_2\)-free bipartite graphs and polynomially solvable on \(2K_2\)-free bipartite graphs and on \((2K_2,C_4)\)-free graphs. As a by-product, we obtain the following new results: the edge clique cover problem is NP-complete on \(\overline{3K_2}\)-free co-bipartite graphs and polynomially solvable on \(C_4\)-free co-bipartite graphs and on \((2K_2, C_4)\)-free graphs. We also give a characterization for k-probe complete graphs which implies that the complete width problem admits a kernel of at most \(2^k\) vertices. This provides another proof for the known fact that the edge clique cover problem admits a kernel of at most \(2^k\) vertices. Finally we determine all graphs of small complete width \(k\le 3\).  相似文献   

7.
Let \(G=G(V,E)\) be a graph. A proper coloring of G is a function \(f:V\rightarrow N\) such that \(f(x)\ne f(y)\) for every edge \(xy\in E\). A proper coloring of a graph G such that for every \(k\ge 1\), the union of any k color classes induces a \((k-1)\)-degenerate subgraph is called a degenerate coloring; a proper coloring of a graph with no two-colored \(P_{4}\) is called a star coloring. If a coloring is both degenerate and star, then we call it a degenerate star coloring of graph. The corresponding chromatic number is denoted as \(\chi _{sd}(G)\). In this paper, we employ entropy compression method to obtain a new upper bound \(\chi _{sd}(G)\le \lceil \frac{19}{6}\Delta ^{\frac{3}{2}}+5\Delta \rceil \) for general graph G.  相似文献   

8.
A 2-distance k-coloring of a graph G is a proper k-coloring such that any two vertices at distance two get different colors. \(\chi _{2}(G)\)=min{k|G has a 2-distance k-coloring}. Wegner conjectured that for each planar graph G with maximum degree \(\Delta \), \(\chi _2(G) \le 7\) if \(\Delta \le 3\), \(\chi _2(G) \le \Delta +5\) if \(4\le \Delta \le 7\) and \(\chi _2(G) \le \lfloor \frac{3\Delta }{2}\rfloor +1\) if \(\Delta \ge 8\). In this paper, we prove that: (1) If G is a planar graph with maximum degree \(\Delta \le 5\), then \(\chi _{2}(G)\le 20\); (2) If G is a planar graph with maximum degree \(\Delta \ge 6\), then \(\chi _{2}(G)\le 5\Delta -7\).  相似文献   

9.
Let \(G = (V,E)\) be a finite graph and let \((\mathbb {A},+)\) be an abelian group with identity 0. Then G is \(\mathbb {A}\)-magic if and only if there exists a function \(\phi \) from E into \(\mathbb {A} - \{0\}\) such that for some \(c \in \mathbb {A}, \sum _{e \in E(v)} \phi (e) = c\) for every \(v \in V\), where E(v) is the set of edges incident to v. Additionally, G is zero-sum \(\mathbb {A}\)-magic if and only if \(\phi \) exists such that \(c = 0\). We consider zero-sum \(\mathbb {A}\)-magic labelings of graphs, with particular attention given to \(\mathbb {A} = \mathbb {Z}_{2j}^k\). For \(j \ge 1\), let \(\zeta _{2j}(G)\) be the smallest positive integer c such that G is zero-sum \(\mathbb {Z}_{2j}^c\)-magic if c exists; infinity otherwise. We establish upper bounds on \(\zeta _{2j}(G)\) when \(\zeta _{2j}(G)\) is finite, and show that \(\zeta _{2j}(G)\) is finite for all r-regular \(G, r \ge 2\). Appealing to classical results on the factors of cubic graphs, we prove that \(\zeta _4(G) \le 2\) for a cubic graph G, with equality if and only if G has no 1-factor. We discuss the problem of classifying cubic graphs according to the collection of finite abelian groups for which they are zero-sum group-magic.  相似文献   

10.
A (proper) total-k-coloring of a graph G is a mapping \(\phi : V (G) \cup E(G)\mapsto \{1, 2, \ldots , k\}\) such that any two adjacent elements in \(V (G) \cup E(G)\) receive different colors. Let C(v) denote the set of the color of a vertex v and the colors of all incident edges of v. A total-k-adjacent vertex distinguishing-coloring of G is a total-k-coloring of G such that for each edge \(uv\in E(G)\), \(C(u)\ne C(v)\). We denote the smallest value k in such a coloring of G by \(\chi ''_{a}(G)\). It is known that \(\chi _{a}''(G)\le \Delta (G)+3\) for any planar graph with \(\Delta (G)\ge 11\). In this paper, we show that if G is a planar graph with \(\Delta (G)\ge 10\), then \(\chi _{a}''(G)\le \Delta (G)+3\). Our approach is based on Combinatorial Nullstellensatz and the discharging method.  相似文献   

11.
A universal labeling of a graph G is a labeling of the edge set in G such that in every orientation \(\ell \) of G for every two adjacent vertices v and u, the sum of incoming edges of v and u in the oriented graph are different from each other. The universal labeling number of a graph G is the minimum number k such that G has universal labeling from \(\{1,2,\ldots , k\}\) denoted it by \(\overrightarrow{\chi _{u}}(G) \). We have \(2\Delta (G)-2 \le \overrightarrow{\chi _{u}} (G)\le 2^{\Delta (G)}\), where \(\Delta (G)\) denotes the maximum degree of G. In this work, we offer a provocative question that is: “Is there any polynomial function f such that for every graph G, \(\overrightarrow{\chi _{u}} (G)\le f(\Delta (G))\)?”. Towards this question, we introduce some lower and upper bounds on their parameter of interest. Also, we prove that for every tree T, \(\overrightarrow{\chi _{u}}(T)={\mathcal {O}}(\Delta ^3) \). Next, we show that for a given 3-regular graph G, the universal labeling number of G is 4 if and only if G belongs to Class 1. Therefore, for a given 3-regular graph G, it is an \( {{\mathbf {N}}}{{\mathbf {P}}} \)-complete to determine whether the universal labeling number of G is 4. Finally, using probabilistic methods, we almost confirm a weaker version of the problem.  相似文献   

12.
Let G be a connected graph with \(n\ge 2\) vertices. Suppose that a fire breaks out at a vertex v of G. A firefighter starts to protect vertices. At each step, the firefighter protects two vertices not yet on fire. At the end of each step, the fire spreads to all the unprotected vertices that have a neighbour on fire. Let sn\(_2(v)\) denote the maximum number of vertices in G that the firefighter can save when a fire breaks out at vertex v. The 2-surviving rate \(\rho _2(G)\) of G is defined to be the real number \(\frac{1}{n^2} \sum _{v\in V(G)} \mathrm{sn}_2(v)\). Then it is obvious that \(0<\rho _2(G)<1\). The graph G is called 2-good if there is a constant \(c>0\) such that \(\rho _2(G)>c\). In this paper, we prove that every planar graph with \(n\ge 2\) vertices and without chordal 5-cycles is 2-good.  相似文献   

13.
This paper is concerned with the design and analysis of approximation algorithms for the problem of determining the least weight refutation in a weighted difference constraint system. Recall that a difference constraint is a linear constraint of the form \(x_{i}-x_{j} \le b_{ij}\) and a conjunction of such constraints is called a difference constraint system (DCS). In a weighted DCS (WDCS), a positive weight is associated with each constraint. Every infeasible constraint system has a refutation, which attests to its infeasibility. In the case of a DCS, this refutation is a subset of the input constraints, which when added together produces a contradiction of the form \(0 \le -b\), \(b> 0\). It follows that every refutation acts as a “no”-certificate. The length of a refutation is the number of constraints used in the derivation of a contradiction. Associated with a DCS \(\mathbf{D: A\cdot x \le b}\) is its constraint network \(\mathbf{G= \langle V,E, b \rangle }\). It is well-known that \(\mathbf{D}\) is infeasible if and only if \(\mathbf{G}\) contains a simple, negative cost cycle. Previous research has established that every negative cost cycle of length k in \(\mathbf{G}\) corresponds exactly to a refutation of \(\mathbf{D}\) using k constraints. It follows that the shortest refutation of \(\mathbf{D}\) (i.e., the refutation which uses the fewest number of constraints) corresponds to the length of the shortest negative cycle in \(\mathbf{G}\). The constraint network of a WDCS is represented by a constraint network \(\mathbf{G = \langle V, E, b, l \rangle }\), where \(\mathbf{l}:\mathbf{E \rightarrow \mathbb {N}}\) represents a function which associates a positive, integral length with each edge in \(\mathbf{G}\). In the case of a WDCS, the weight of a refutation is defined as the sum of the lengths of the edges corresponding to the refutation. The problem of finding the minimum weight refutation in a WDCS is called the weighted optimal length resolution refutation (WOLRR) problem and is known to be NP-hard. In this paper, we describe a pseudo-polynomial time algorithm for the WOLRR problem and convert it into a fully polynomial time approximation scheme (FPTAS).  相似文献   

14.
Gyárfás conjectured that for a given forest F, there exists an integer function f(Fx) such that \(\chi (G)\le f(F,\omega (G))\) for each F-free graph G, where \(\omega (G)\) is the clique number of G. The broom B(mn) is the tree of order \(m+n\) obtained from identifying a vertex of degree 1 of the path \(P_m\) with the center of the star \(K_{1,n}\). In this note, we prove that every connected, triangle-free and B(mn)-free graph is \((m+n-2)\)-colorable as an extension of a result of Randerath and Schiermeyer and a result of Gyárfás, Szemeredi and Tuza. In addition, it is also shown that every connected, triangle-free, \(C_4\)-free and T-free graph is \((p-2)\)-colorable, where T is a tree of order \(p\ge 4\) and \(T\not \cong K_{1,3}\).  相似文献   

15.
A (proper) total-k-coloring of a graph G is a mapping \(\phi : V (G) \cup E(G)\mapsto \{1, 2, \ldots , k\}\) such that any two adjacent or incident elements in \(V (G) \cup E(G)\) receive different colors. Let C(v) denote the set of the color of a vertex v and the colors of all incident edges of v. An adjacent vertex distinguishing total-k-coloring of G is a total-k-coloring of G such that for each edge \(uv\in E(G)\), \(C(u)\ne C(v)\). We denote the smallest value k in such a coloring of G by \(\chi ^{\prime \prime }_{a}(G)\). It is known that \(\chi _{a}^{\prime \prime }(G)\le \Delta (G)+3\) for any planar graph with \(\Delta (G)\ge 10\). In this paper, we consider the list version of this coloring and show that if G is a planar graph with \(\Delta (G)\ge 11\), then \({ ch}_{a}^{\prime \prime }(G)\le \Delta (G)+3\), where \({ ch}^{\prime \prime }_a(G)\) is the adjacent vertex distinguishing total choosability.  相似文献   

16.
A partition of the vertex set V(G) of a graph G into \(V(G)=V_1\cup V_2\cup \cdots \cup V_k\) is called a k-strong subcoloring if \(d(x,y)\ne 2\) in G for every \(x,y\in V_i\), \(1\le i \le k\) where d(xy) denotes the length of a shortest x-y path in G. The strong subchromatic number is defined as \(\chi _{sc}(G)=\text {min}\{ k:G \text { admits a }k\)-\(\text {strong subcoloring}\}\). In this paper, we explore the complexity status of the StrongSubcoloring problem: for a given graph G and a positive integer k, StrongSubcoloring is to decide whether G admits a k-strong subcoloring. We prove that StrongSubcoloring is NP-complete for subcubic bipartite graphs and the problem is polynomial time solvable for trees. In addition, we prove the following dichotomy results: (i) for the class of \(K_{1,r}\)-free split graphs, StrongSubcoloring is in P when \(r\le 3\) and NP-complete when \(r>3\) and (ii) for the class of H-free graphs, StrongSubcoloring is polynomial time solvable only if H is an induced subgraph of \(P_4\); otherwise the problem is NP-complete. Next, we consider a lower bound on the strong subchromatic number. A strong set is a set S of vertices of a graph G such that for every \(x,y\in S\), \(d(x,y)= 2\) in G and the cardinality of a maximum strong set in G is denoted by \(\alpha _{s}(G)\). Clearly, \(\alpha _{s}(G)\le \chi _{sc}(G)\). We consider the complexity status of the StrongSet problem: given a graph G and a positive integer k, StrongSet asks whether G contains a strong set of cardinality k. We prove that StrongSet is NP-complete for (i) bipartite graphs and (ii) \(K_{1,4}\)-free split graphs, and it is polynomial time solvable for (i) trees and (ii) \(P_4\)-free graphs.  相似文献   

17.
Because of its application in the field of security in wireless sensor networks, k-path vertex cover (\(\hbox {VCP}_k\)) has received a lot of attention in recent years. Given a graph \(G=(V,E)\), a vertex set \(C\subseteq V\) is a k-path vertex cover (\(\hbox {VCP}_k\)) of G if every path on k vertices has at least one vertex in C, and C is a connected k-path vertex cover of G (\(\hbox {CVCP}_k\)) if furthermore the subgraph of G induced by C is connected. A homogeneous wireless sensor network can be modeled as a unit disk graph. This paper presents a new PTAS for \(\hbox {MinCVCP}_k\) on unit disk graphs. Compared with previous PTAS given by Liu et al., our method not only simplifies the algorithm and reduces the time-complexity, but also simplifies the analysis by a large amount.  相似文献   

18.
This paper studies the continuous connected 2-facility location problem (CC2FLP) in trees. Let \(T = (V, E, c, d, \ell , \mu )\) be an undirected rooted tree, where each node \(v \in V\) has a weight \(d(v) \ge 0\) denoting the demand amount of v as well as a weight \(\ell (v) \ge 0\) denoting the cost of opening a facility at v, and each edge \(e \in E\) has a weight \(c(e) \ge 0\) denoting the cost on e and is associated with a function \(\mu (e,t) \ge 0\) denoting the cost of opening a facility at a point x(et) on e where t is a continuous variable on e. Given a subset \(\mathcal {D} \subseteq V\) of clients, and a subset \(\mathcal {F} \subseteq \mathcal {P}(T)\) of continuum points admitting facilities where \(\mathcal {P}(T)\) is the set of all the points on edges of T, when two facilities are installed at a pair of continuum points \(x_1\) and \(x_2\) in \(\mathcal {F}\), the total cost involved in CC2FLP includes three parts: the cost of opening two facilities at \(x_1\) and \(x_2\), K times the cost of connecting \(x_1\) and \(x_2\), and the cost of all the clients in \(\mathcal {D}\) connecting to some facility. The objective is to open two facilities at a pair of continuum points in \(\mathcal {F}\) to minimize the total cost, for a given input parameter \(K \ge 1\). This paper focuses on the case of \(\mathcal {D} = V\) and \(\mathcal {F} = \mathcal {P}(T)\). We first study the discrete version of CC2FLP, named the discrete connected 2-facility location problem (DC2FLP), where two facilities are restricted to the nodes of T, and devise a quadratic time edge-splitting algorithm for DC2FLP. Furthermore, we prove that CC2FLP is almost equivalent to DC2FLP in trees, and develop a quadratic time exact algorithm based on the edge-splitting algorithm. Finally, we adapt our algorithms to the general case of \(\mathcal {D} \subseteq V\) and \(\mathcal {F} \subseteq \mathcal {P}(T)\).  相似文献   

19.
For \(S\subseteq G\), let \(\kappa (S)\) denote the maximum number r of edge-disjoint trees \(T_1, T_2, \ldots , T_r\) in G such that \(V(T_i)\cap V(T_j)=S\) for any \(i,j\in \{1,2,\ldots ,r\}\) and \(i\ne j\). For every \(2\le k\le n\), the k-connectivity of G, denoted by \(\kappa _k(G)\), is defined as \(\kappa _k(G)=\hbox {min}\{\kappa (S)| S\subseteq V(G)\ and\ |S|=k\}\). Clearly, \(\kappa _2(G)\) corresponds to the traditional connectivity of G. In this paper, we focus on the structure of minimally 2-connected graphs with \(\kappa _{3}=2\). Denote by \(\mathcal {H}\) the set of minimally 2-connected graphs with \(\kappa _{3}=2\). Let \(\mathcal {B}\subseteq \mathcal {H}\) and every graph in \(\mathcal {B}\) is either \(K_{2,3}\) or the graph obtained by subdividing each edge of a triangle-free 3-connected graph. We obtain that \(H\in \mathcal {H}\) if and only if \(H\in \mathcal {B}\) or H can be constructed from one or some graphs \(H_{1},\ldots ,H_{k}\) in \(\mathcal {B}\) (\(k\ge 1\)) by applying some operations recursively.  相似文献   

20.
Let \(N=\{1,\dots ,n\}\) be a set of customers who want to buy a single homogenous goods in market. Let \(q_i>0\) be the quantity that \(i\in N\) demands, \(q=(q_1,\dots ,q_n)\) and \(q_S=\sum _{i\in S}q_i\) for \(S\subseteq N\). If f(s) is a (increasing and concave) cost function, then it yields a cooperative game (Nfq) by defining characteristic function \(v(S)=f(q_S)\) for \(S\subseteq N\). We now consider the way of taking packages of goods by customers and define a communication graph L on N, in which i and j are linked if they can take packages for each other. So if i and j are connected, then a package can be delivered from i to j by some intermediators. We thus admit any connected subset as a feasible coalition, and obtain a game (NfqL) by defining characteristic function \(v_L(S)=\sum _{R\in S/L}f(q_R)\) for \(S\subseteq N\), where S / L is the family of induced components (maximal connected subset) in S. It is shown that there is an allocation (cost shares) \(x=(x_1,\dots ,x_n)\) from the core for the game (\(x_S\le v_L(S)\) for any \(S\subseteq N\)) such that x satisfies Component Efficiency and Ranking for Unit Prices. If f(s) and q satisfy some further condition, then there is an allocation x from the core such that x satisfies Component Efficiency, and \(x_i \le x_j\) and \(\frac{x_i}{q_i} \ge \frac{x_j}{q_j}\) if \(q_i \le q_j\) for i and j in the same component of N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号