首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A proper k-total coloring of a graph G is a mapping from \(V(G)\cup E(G)\) to \(\{1,2,\ldots ,k\}\) such that no two adjacent or incident elements in \(V(G)\cup E(G)\) receive the same color. Let f(v) denote the sum of the colors on the edges incident with v and the color on vertex v. A proper k-total coloring of G is called neighbor sum distinguishing if \(f(u)\ne f(v)\) for each edge \(uv\in E(G)\). Let \(\chi ''_{\Sigma }(G)\) denote the smallest integer k in such a coloring of G. Pil?niak and Wo?niak conjectured that for any graph G, \(\chi ''_{\Sigma }(G)\le \Delta (G)+3\). In this paper, we show that if G is a 2-degenerate graph, then \(\chi ''_{\Sigma }(G)\le \Delta (G)+3\); Moreover, if \(\Delta (G)\ge 5\) then \(\chi ''_{\Sigma }(G)\le \Delta (G)+2\).  相似文献   

2.
A graph G is said to be neighbor-sum-distinguishing edge k-choose if, for every list L of colors such that L(e) is a set of k positive real numbers for every edge e, there exists a proper edge coloring which assigns to each edge a color from its list so that for each pair of adjacent vertices u and v the sum of colors taken on the edges incident to u is different from the sum of colors taken on the edges incident to v. Let \(\mathrm{ch}^{\prime }_{\sum ^p}(G)\) denote the smallest integer k such that G is neighbor-sum-distinguishing edge k-choose. In this paper, we prove that if G is a subcubic graph with the maximum average degree mad(G), then (1) \(\mathrm{ch}^{\prime }_{\sum ^p}(G)\le 7\); (2) \(\mathrm{ch}^{\prime }_{\sum ^p}(G)\le 6\) if \(\hbox {mad}(G)<\frac{36}{13}\); (3) \(\mathrm{ch}^{\prime }_{\sum ^p}(G)\le 5\) if \(\hbox {mad}(G)<\frac{5}{2}\).  相似文献   

3.
Let \(G=(V,E)\) be a graph and \(\phi : V\cup E\rightarrow \{1,2,\ldots ,k\}\) be a proper total coloring of G. Let f(v) denote the sum of the color on a vertex v and the colors on all the edges incident with v. The coloring \(\phi \) is neighbor sum distinguishing if \(f(u)\ne f(v)\) for each edge \(uv\in E(G)\). The smallest integer k in such a coloring of G is the neighbor sum distinguishing total chromatic number of G, denoted by \(\chi _{\Sigma }''(G)\). Pil?niak and Wo?niak conjectured that \(\chi _{\Sigma }''(G)\le \Delta (G)+3\) for any simple graph. By using the famous Combinatorial Nullstellensatz, we prove that \(\chi _{\Sigma }''(G)\le \max \{\Delta (G)+2, 10\}\) for planar graph G without 4-cycles. The bound \(\Delta (G)+2\) is sharp if \(\Delta (G)\ge 8\).  相似文献   

4.
Let \(G=(V, E)\) be a simple graph and denote the set of edges incident to a vertex v by E(v). The neighbor sum distinguishing (NSD) total choice number of G, denoted by \(\mathrm{ch}_{\Sigma }^{t}(G)\), is the smallest integer k such that, after assigning each \(z\in V\cup E\) a set L(z) of k real numbers, G has a total coloring \(\phi \) satisfying \(\phi (z)\in L(z)\) for each \(z\in V\cup E\) and \(\sum _{z\in E(u)\cup \{u\}}\phi (z)\ne \sum _{z\in E(v)\cup \{v\}}\phi (z)\) for each \(uv\in E\). In this paper, we propose some reducible configurations of NSD list total coloring for general graphs by applying the Combinatorial Nullstellensatz. As an application, we present that \(\mathrm{ch}^{t}_{\Sigma }(G)\le \Delta (G)+3\) for every subcubic graph G.  相似文献   

5.
A proper total k-coloring \(\phi \) of a graph G is a mapping from \(V(G)\cup E(G)\) to \(\{1,2,\dots , k\}\) such that no adjacent or incident elements in \(V(G)\cup E(G)\) receive the same color. Let \(m_{\phi }(v)\) denote the sum of the colors on the edges incident with the vertex v and the color on v. A proper total k-coloring of G is called neighbor sum distinguishing if \(m_{\phi }(u)\not =m_{\phi }(v)\) for each edge \(uv\in E(G).\) Let \(\chi _{\Sigma }^t(G)\) be the neighbor sum distinguishing total chromatic number of a graph G. Pil?niak and Wo?niak conjectured that for any graph G, \(\chi _{\Sigma }^t(G)\le \Delta (G)+3\). In this paper, we show that if G is a graph with treewidth \(\ell \ge 3\) and \(\Delta (G)\ge 2\ell +3\), then \(\chi _{\Sigma }^t(G)\le \Delta (G)+\ell -1\). This upper bound confirms the conjecture for graphs with treewidth 3 and 4. Furthermore, when \(\ell =3\) and \(\Delta \ge 9\), we show that \(\Delta (G) + 1\le \chi _{\Sigma }^t(G)\le \Delta (G)+2\) and characterize graphs with equalities.  相似文献   

6.
Neighbor sum distinguishing total choosability of planar graphs   总被引:1,自引:1,他引:0  
A total-k-coloring of a graph G is a mapping \(c: V(G)\cup E(G)\rightarrow \{1, 2,\dots , k\}\) such that any two adjacent or incident elements in \(V(G)\cup E(G)\) receive different colors. For a total-k-coloring of G, let \(\sum _c(v)\) denote the total sum of colors of the edges incident with v and the color of v. If for each edge \(uv\in E(G)\), \(\sum _c(u)\ne \sum _c(v)\), then we call such a total-k-coloring neighbor sum distinguishing. The least number k needed for such a coloring of G is the neighbor sum distinguishing total chromatic number, denoted by \(\chi _{\Sigma }^{''}(G)\). Pil?niak and Wo?niak conjectured \(\chi _{\Sigma }^{''}(G)\le \Delta (G)+3\) for any simple graph with maximum degree \(\Delta (G)\). In this paper, we prove that for any planar graph G with maximum degree \(\Delta (G)\), \(ch^{''}_{\Sigma }(G)\le \max \{\Delta (G)+3,16\}\), where \(ch^{''}_{\Sigma }(G)\) is the neighbor sum distinguishing total choosability of G.  相似文献   

7.
A total-[k]-coloring of a graph G is a mapping \(\phi : V (G) \cup E(G)\rightarrow \{1, 2, \ldots , k\}\) such that any two adjacent elements in \(V (G) \cup E(G)\) receive different colors. Let f(v) denote the product of the color of a vertex v and the colors of all edges incident to v. A total-[k]-neighbor product distinguishing-coloring of G is a total-[k]-coloring of G such that \(f(u)\ne f(v)\), where \(uv\in E(G)\). By \(\chi ^{\prime \prime }_{\prod }(G)\), we denote the smallest value k in such a coloring of G. We conjecture that \(\chi _{\prod }^{\prime \prime }(G)\le \Delta (G)+3\) for any simple graph with maximum degree \(\Delta (G)\). In this paper, we prove that the conjecture holds for complete graphs, cycles, trees, bipartite graphs and subcubic graphs. Furthermore, we show that if G is a \(K_4\)-minor free graph with \(\Delta (G)\ge 4\), then \(\chi _{\prod }^{\prime \prime }(G)\le \Delta (G)+2\).  相似文献   

8.
A (proper) total-k-coloring of a graph G is a mapping \(\phi : V (G) \cup E(G)\mapsto \{1, 2, \ldots , k\}\) such that any two adjacent or incident elements in \(V (G) \cup E(G)\) receive different colors. Let C(v) denote the set of the color of a vertex v and the colors of all incident edges of v. An adjacent vertex distinguishing total-k-coloring of G is a total-k-coloring of G such that for each edge \(uv\in E(G)\), \(C(u)\ne C(v)\). We denote the smallest value k in such a coloring of G by \(\chi ^{\prime \prime }_{a}(G)\). It is known that \(\chi _{a}^{\prime \prime }(G)\le \Delta (G)+3\) for any planar graph with \(\Delta (G)\ge 10\). In this paper, we consider the list version of this coloring and show that if G is a planar graph with \(\Delta (G)\ge 11\), then \({ ch}_{a}^{\prime \prime }(G)\le \Delta (G)+3\), where \({ ch}^{\prime \prime }_a(G)\) is the adjacent vertex distinguishing total choosability.  相似文献   

9.
A (proper) total-k-coloring of a graph G is a mapping \(\phi : V (G) \cup E(G)\mapsto \{1, 2, \ldots , k\}\) such that any two adjacent elements in \(V (G) \cup E(G)\) receive different colors. Let C(v) denote the set of the color of a vertex v and the colors of all incident edges of v. A total-k-adjacent vertex distinguishing-coloring of G is a total-k-coloring of G such that for each edge \(uv\in E(G)\), \(C(u)\ne C(v)\). We denote the smallest value k in such a coloring of G by \(\chi ''_{a}(G)\). It is known that \(\chi _{a}''(G)\le \Delta (G)+3\) for any planar graph with \(\Delta (G)\ge 11\). In this paper, we show that if G is a planar graph with \(\Delta (G)\ge 10\), then \(\chi _{a}''(G)\le \Delta (G)+3\). Our approach is based on Combinatorial Nullstellensatz and the discharging method.  相似文献   

10.
The problem of list coloring of graphs appears in practical problems concerning channel or frequency assignment. In this paper, we study the minimum number of choosability of planar graphs. A graph G is edge-k-choosable if whenever every edge x is assigned with a list of at least k colors, L(x)), there exists an edge coloring \(\phi \) such that \(\phi (x) \in L(x)\). Similarly, A graph G is toal-k-choosable if when every element (edge or vertex) x is assigned with a list of at least k colors, L(x), there exists an total coloring \(\phi \) such that \(\phi (x) \in L(x)\). We proved \(\chi '_{l}(G)=\Delta \) and \(\chi ''_{l}(G)=\Delta +1\) for a planar graph G with maximum degree \(\Delta \ge 8\) and without chordal 6-cycles, where the list edge chromatic number \(\chi '_{l}(G)\) of G is the smallest integer k such that G is edge-k-choosable and the list total chromatic number \(\chi ''_{l}(G)\) of G is the smallest integer k such that G is total-k-choosable.  相似文献   

11.
A coloring of a graph \(G=(V,E)\) is a partition \(\{V_1, V_2, \ldots , V_k\}\) of V into independent sets or color classes. A vertex \(v\in V_i\) is a Grundy vertex if it is adjacent to at least one vertex in each color class \(V_j\) for every \(j<i\). A coloring is a Grundy coloring if every vertex is a Grundy vertex, and the Grundy number \(\Gamma (G)\) of a graph G is the maximum number of colors in a Grundy coloring. We provide two new upper bounds on Grundy number of a graph and a stronger version of the well-known Nordhaus-Gaddum theorem. In addition, we give a new characterization for a \(\{P_{4}, C_4\}\)-free graph by supporting a conjecture of Zaker, which says that \(\Gamma (G)\ge \delta (G)+1\) for any \(C_4\)-free graph G.  相似文献   

12.
Let G be a graph with vertex set V and no isolated vertices, and let S be a dominating set of V. The set S is a semitotal dominating set of G if every vertex in S is within distance 2 of another vertex of S. And, S is a semipaired dominating set of G if S can be partitioned into 2-element subsets such that the vertices in each 2-set are at most distance two apart. The semitotal domination number \(\gamma _\mathrm{t2}(G)\) is the minimum cardinality of a semitotal dominating set of G, and the semipaired domination number \(\gamma _\mathrm{pr2}(G)\) is the minimum cardinality of a semipaired dominating set of G. For a graph without isolated vertices, the domination number \(\gamma (G)\), the total domination \(\gamma _t(G)\), and the paired domination number \(\gamma _\mathrm{pr}(G)\) are related to the semitotal and semipaired domination numbers by the following inequalities: \(\gamma (G) \le \gamma _\mathrm{t2}(G) \le \gamma _t(G) \le \gamma _\mathrm{pr}(G)\) and \(\gamma (G) \le \gamma _\mathrm{t2}(G) \le \gamma _\mathrm{pr2}(G) \le \gamma _\mathrm{pr}(G) \le 2\gamma (G)\). Given two graph parameters \(\mu \) and \(\psi \) related by a simple inequality \(\mu (G) \le \psi (G)\) for every graph G having no isolated vertices, a graph is \((\mu ,\psi )\)-perfect if every induced subgraph H with no isolated vertices satisfies \(\mu (H) = \psi (H)\). Alvarado et al. (Discrete Math 338:1424–1431, 2015) consider classes of \((\mu ,\psi )\)-perfect graphs, where \(\mu \) and \(\psi \) are domination parameters including \(\gamma \), \(\gamma _t\) and \(\gamma _\mathrm{pr}\). We study classes of perfect graphs for the possible combinations of parameters in the inequalities when \(\gamma _\mathrm{t2}\) and \(\gamma _\mathrm{pr2}\) are included in the mix. Our results are characterizations of several such classes in terms of their minimal forbidden induced subgraphs.  相似文献   

13.
A total coloring of a graph G is an assignment of colors to the vertices and the edges of G such that every pair of adjacent/incident elements receive distinct colors. The total chromatic number of a graph G, denoted by \(\chi ''(G)\), is the minimum number of colors in a total coloring of G. The well-known total coloring conjecture (TCC) says that every graph with maximum degree \(\Delta \) admits a total coloring with at most \(\Delta + 2\) colors. A graph is 1-toroidal if it can be drawn in torus such that every edge crosses at most one other edge. In this paper, we investigate the total coloring of 1-toroidal graphs, and prove that the TCC holds for the 1-toroidal graphs with maximum degree at least 11 and some restrictions on the triangles. Consequently, if G is a 1-toroidal graph with maximum degree \(\Delta \) at least 11 and without adjacent triangles, then G admits a total coloring with at most \(\Delta + 2\) colors.  相似文献   

14.
A paired-dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching, while the paired-domination number is the minimum cardinality of a paired-dominating set in the graph, denoted by \(\gamma _{pr}(G)\). Let G be a connected \(\{K_{1,3}, K_{4}-e\}\)-free cubic graph of order n. We show that \(\gamma _{pr}(G)\le \frac{10n+6}{27}\) if G is \(C_{4}\)-free and that \(\gamma _{pr}(G)\le \frac{n}{3}+\frac{n+6}{9(\lceil \frac{3}{4}(g_o+1)\rceil +1)}\) if G is \(\{C_{4}, C_{6}, C_{10}, \ldots , C_{2g_o}\}\)-free for an odd integer \(g_o\ge 3\); the extremal graphs are characterized; we also show that if G is a 2 -connected, \(\gamma _{pr}(G) = \frac{n}{3} \). Furthermore, if G is a connected \((2k+1)\)-regular \(\{K_{1,3}, K_4-e\}\)-free graph of order n, then \(\gamma _{pr}(G)\le \frac{n}{k+1} \), with equality if and only if \(G=L(F)\), where \(F\cong K_{1, 2k+2}\), or k is even and \(F\cong K_{k+1,k+2}\).  相似文献   

15.
An adjacent vertex-distinguishing edge coloring of a graph is a proper edge coloring such that no pair of adjacent vertices meets the same set of colors. The adjacent vertex-distinguishing edge chromatic number is the minimum number of colors required for an adjacent vertex-distinguishing edge coloring, denoted as \(\chi '_{as}(G)\). In this paper, we prove that for a connected graph G with maximum degree \(\Delta \ge 3\), \(\chi '_{as}(G)\le 3\Delta -1\), which proves the previous upper bound. We also prove that for a graph G with maximum degree \(\Delta \ge 458\) and minimum degree \(\delta \ge 8\sqrt{\Delta ln \Delta }\), \(\chi '_{as}(G)\le \Delta +1+5\sqrt{\Delta ln \Delta }\).  相似文献   

16.
Let \(G=G(V,E)\) be a graph. A proper coloring of G is a function \(f:V\rightarrow N\) such that \(f(x)\ne f(y)\) for every edge \(xy\in E\). A proper coloring of a graph G such that for every \(k\ge 1\), the union of any k color classes induces a \((k-1)\)-degenerate subgraph is called a degenerate coloring; a proper coloring of a graph with no two-colored \(P_{4}\) is called a star coloring. If a coloring is both degenerate and star, then we call it a degenerate star coloring of graph. The corresponding chromatic number is denoted as \(\chi _{sd}(G)\). In this paper, we employ entropy compression method to obtain a new upper bound \(\chi _{sd}(G)\le \lceil \frac{19}{6}\Delta ^{\frac{3}{2}}+5\Delta \rceil \) for general graph G.  相似文献   

17.
Let G be a graph without isolated vertices. A k-coupon coloring of G is a k-coloring of G such that the neighborhood of every vertex of G contains vertices of all colors from \([k] =\{1, 2, \ldots , k\}\), which was recently introduced by Chen, Kim, Tait and Verstraete. The coupon coloring number \(\chi _c(G)\) of G is the maximum k for which a k-coupon coloring exists. In this paper, we mainly study the coupon coloring of some special classes of graphs. We determine the coupon coloring numbers of complete graphs, complete k-partite graphs, wheels, cycles, unicyclic graphs, bicyclic graphs and generalised \(\Theta \)-graphs.  相似文献   

18.
An L(2, 1)-coloring (or labeling) of a graph G is a mapping \(f:V(G) \rightarrow \mathbb {Z}^{+}\bigcup \{0\}\) such that \(|f(u)-f(v)|\ge 2\) for all edges uv of G, and \(|f(u)-f(v)|\ge 1\) if u and v are at distance two in G. The span of an L(2, 1)-coloring f, denoted by span f, is the largest integer assigned by f to some vertex of the graph. The span of a graph G, denoted by \(\lambda (G)\), is min {span \(f: f\text {is an }L(2,1)\text {-coloring of } G\}\). If f is an L(2, 1)-coloring of a graph G with span k then an integer l is a hole in f, if \(l\in (0,k)\) and there is no vertex v in G such that \(f(v)=l\). A no-hole coloring is defined to be an L(2, 1)-coloring with span k which uses all the colors from \(\{0,1,\ldots ,k\}\), for some integer k not necessarily the span of the graph. An L(2, 1)-coloring is said to be irreducible if colors of no vertices in the graph can be decreased and yield another L(2, 1)-coloring of the same graph. An irreducible no-hole coloring of a graph G, also called inh-coloring of G, is an L(2, 1)-coloring of G which is both irreducible and no-hole. The lower inh-span or simply inh-span of a graph G, denoted by \(\lambda _{inh}(G)\), is defined as \(\lambda _{inh}(G)=\min ~\{\)span f : f is an inh-coloring of G}. Given a graph G and a function h from E(G) to \(\mathbb {N}\), the h-subdivision of G, denoted by \(G_{(h)}\), is the graph obtained from G by replacing each edge uv in G with a path of length h(uv). In this paper we show that \(G_{(h)}\) is inh-colorable for \(h(e)\ge 2\), \(e\in E(G)\), except the case \(\Delta =3\) and \(h(e)=2\) for at least one edge but not for all. Moreover we find the exact value of \(\lambda _{inh}(G_{(h)})\) in several cases and give upper bounds of the same in the remaining.  相似文献   

19.
For a graph \(G=(V, E)\), a weak \(\{2\}\)-dominating function \(f:V\rightarrow \{0,1,2\}\) has the property that \(\sum _{u\in N(v)}f(u)\ge 2\) for every vertex \(v\in V\) with \(f(v)= 0\), where N(v) is the set of neighbors of v in G. The weight of a weak \(\{2\}\)-dominating function f is the sum \(\sum _{v\in V}f(v)\) and the minimum weight of a weak \(\{2\}\)-dominating function is the weak \(\{2\}\)-domination number. In this paper, we introduce a discharging approach and provide a short proof for the lower bound of the weak \(\{2\}\)-domination number of \(C_n \Box C_5\), which was obtained by St?pień, et al. (Discrete Appl Math 170:113–116, 2014). Moreover, we obtain the weak \(\{2\}\)-domination numbers of \(C_n \Box C_3\) and \(C_n \Box C_4\).  相似文献   

20.
A list assignment of G is a function L that assigns to each vertex \(v\in V(G)\) a list L(v) of available colors. Let r be a positive integer. For a given list assignment L of G, an (Lr)-coloring of G is a proper coloring \(\phi \) such that for any vertex v with degree d(v), \(\phi (v)\in L(v)\) and v is adjacent to at least \( min\{d(v),r\}\) different colors. The list r-hued chromatic number of G, \(\chi _{L,r}(G)\), is the least integer k such that for every list assignment L with \(|L(v)|=k\), \(v\in V(G)\), G has an (Lr)-coloring. We show that if \(r\ge 32\) and G is a planar graph without 4-cycles, then \(\chi _{L,r}(G)\le r+8\). This result implies that for a planar graph with maximum degree \(\varDelta \ge 26\) and without 4-cycles, Wagner’s conjecture in [Graphs with given diameter and coloring problem, Technical Report, University of Dortmund, Germany, 1977] holds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号