首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inspired by the commonly held view that international stock market volatility is equivalent to cross-market information flow, we propose various ways of constructing two types of information flow, based on realized volatility (RV) and implied volatility (IV), in multiple international markets. We focus on the RVs derived from the intraday prices of eight international stock markets and use a heterogeneous autoregressive framework to forecast the future volatility of each market for 1 day to 22 days ahead. Our Diebold-Mariano tests provide strong evidence that information flow with IV enhances the accuracy of forecasting international RVs over all of the prediction horizons. The results of a model confidence set test show that a market's own IV and the first principal component of the international IVs exhibit the strongest predictive ability. In addition, the use of information flows with IV can further increase economic returns. Our results are supported by the findings of a wide range of robustness checks.  相似文献   

2.
The existing contradictory findings on the contribution of trading volume to volatility forecasting prompt us to seek new solutions to test the sequential information arrival hypothesis (SIAH). Departing from other empirical analyses that mainly focus on sophisticated testing methods, this research offers new insights into the volume-volatility nexus by decomposing and reconstructing the trading activity into short-run components that typically represent irregular information flow and long-run components that denote extreme information flow in the stock market. We are the first to attempt at incorporating an improved empirical mode decomposition (EMD) method to investigate the volatility forecasting ability of trading volume along with the Heterogeneous Autoregressive (HAR) model. Previous trading volume is used to obtain the decompositions to forecast the future volatility to ensure an ex ante forecast, and both the decomposition and forecasting processes are carried out by the rolling window scheme. Rather than trading volume by itself, the results show that the reconstructed components are also able to significantly improve out-of-sample realized volatility (RV) forecasts. This finding is robust both in one-step ahead and multiple-step ahead forecasting horizons under different estimation windows. We thus fill the gap in studies by (1) extending the literature on the volume-volatility linkage to EMD-HAR analysis and (2) providing a clear view on how trading volume helps improve RV forecasting accuracy.  相似文献   

3.
To forecast realized volatility, this paper introduces a multiplicative error model that incorporates heterogeneous components: weekly and monthly realized volatility measures. While the model captures the long‐memory property, estimation simply proceeds using quasi‐maximum likelihood estimation. This paper investigates its forecasting ability using the realized kernels of 34 different assets provided by the Oxford‐Man Institute's Realized Library. The model outperforms benchmark models such as ARFIMA, HAR, Log‐HAR and HEAVY‐RM in within‐sample fitting and out‐of‐sample (1‐, 10‐ and 22‐step) forecasts. It performed best in both pointwise and cumulative comparisons of multi‐step‐ahead forecasts, regardless of loss function (QLIKE or MSE). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper we compare several multi‐period volatility forecasting models, specifically from MIDAS and HAR families. We perform our comparisons in terms of out‐of‐sample volatility forecasting accuracy. We also consider combinations of the models' forecasts. Using intra‐daily returns of the BOVESPA index, we calculate volatility measures such as realized variance, realized power variation and realized bipower variation to be used as regressors in both models. Further, we use a nonparametric procedure for separately measuring the continuous sample path variation and the discontinuous jump part of the quadratic variation process. Thus MIDAS and HAR specifications with the continuous sample path and jump variability measures as separate regressors are estimated. Our results in terms of mean squared error suggest that regressors involving volatility measures which are robust to jumps (i.e. realized bipower variation and realized power variation) are better at forecasting future volatility. However, we find that, in general, the forecasts based on these regressors are not statistically different from those based on realized variance (the benchmark regressor). Moreover, we find that, in general, the relative forecasting performances of the three approaches (i.e. MIDAS, HAR and forecast combinations) are statistically equivalent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
In a conditional predictive ability test framework, we investigate whether market factors influence the relative conditional predictive ability of realized measures (RMs) and implied volatility (IV), which is able to examine the asynchronism in their forecasting accuracy, and further analyze their unconditional forecasting performance for volatility forecast. Our results show that the asynchronism can be detected significantly and is strongly related to certain market factors, and the comparison between RMs and IV on average forecast performance is more efficient than previous studies. Finally, we use the factors to extend the empirical similarity (ES) approach for combination of forecasts derived from RMs and IV.  相似文献   

6.
The heterogeneous autoregressive model of realized volatility (HAR‐RV) is inspired by the heterogeneous market hypothesis and characterizes realized volatility dynamics through a linear function of lagged daily, weekly and monthly realized volatilities with a (1, 5, 22) lag structure. Considering that different markets can have different heterogeneous structures and a market's heterogeneous structure can vary over time, we build an adaptive heterogeneous autoregressive model of realized volatility (AHAR‐RV), whose lag structure is optimized with a genetic algorithm. Using nine common loss functions and the superior predictive ability test, we find that our AHAR‐RV model and its extensions provide significantly better out‐of‐sample volatility forecasts for the CSI 300 index than the corresponding HAR models. Furthermore, the AHAR‐RV model significantly outperforms all the other models under most loss functions. Besides, we confirm that Chinese stock markets' heterogeneous structure varies over time and the (1, 5, 22) lag structure is not the optimal choice. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
This paper proposes a new mixed‐frequency approach to predict stock return volatilities out‐of‐sample. Based on the strategy of momentum of predictability (MoP), our mixed‐frequency approach has a model switching mechanism that switches between generalized autoregressive conditional heteroskedasticity (GARCH)‐class models that only use low‐frequency data and heterogeneous autoregressive models of realized volatility (HAR‐RV)‐type that only use high‐frequency data. The MoP model simply selects a forecast with relatively good past performance between the GARCH‐class and HAR‐RV‐type forecasts. The model confidence set (MCS) test shows that our MoP strategy significantly outperforms the competing models, which is robust to various settings. The MoP test shows that a relatively good recent past forecasting performance of the GARCH‐class or HAR‐RV‐type model is significantly associated with a relatively good current performance, supporting the success of the MoP model.  相似文献   

8.
The increase in oil price volatility in recent years has raised the importance of forecasting it accurately for valuing and hedging investments. The paper models and forecasts the crude oil exchange‐traded funds (ETF) volatility index, which has been used in the last years as an important alternative measure to track and analyze the volatility of future oil prices. Analysis of the oil volatility index suggests that it presents features similar to those of the daily market volatility index, such as long memory, which is modeled using well‐known heterogeneous autoregressive (HAR) specifications and new extensions that are based on net and scaled measures of oil price changes. The aim is to improve the forecasting performance of the traditional HAR models by including predictors that capture the impact of oil price changes on the economy. The performance of the new proposals and benchmarks is evaluated with the model confidence set (MCS) and the Generalized‐AutoContouR (G‐ACR) tests in terms of point forecasts and density forecasting, respectively. We find that including the leverage in the conditional mean or variance of the basic HAR model increases its predictive ability. Furthermore, when considering density forecasting, the best models are a conditional heteroskedastic HAR model that includes a scaled measure of oil price changes, and a HAR model with errors following an exponential generalized autoregressive conditional heteroskedasticity specification. In both cases, we consider a flexible distribution for the errors of the conditional heteroskedastic process.  相似文献   

9.
Recent multivariate extensions of the popular heterogeneous autoregressive model (HAR) for realized volatility leave substantial information unmodelled in residuals. We propose to employ a system of seemingly unrelated regressions to model and forecast a realized covariance matrix to capture this information. We find that the newly proposed generalized heterogeneous autoregressive (GHAR) model outperforms competing approaches in terms of economic gains, providing better mean–variance trade‐off, while, in terms of statistical precision, GHAR is not substantially dominated by any other model. Our results provide a comprehensive comparison of the performance when realized covariance, subsampled realized covariance and multivariate realized kernel estimators are used. We study the contribution of the estimators across different sampling frequencies, and show that the multivariate realized kernel and subsampled realized covariance estimators deliver further gains compared to realized covariance estimated on a 5‐minute frequency. In order to show economic and statistical gains, a portfolio of various sizes is used. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we investigate the time series properties of S&P 100 volatility and the forecasting performance of different volatility models. We consider several nonparametric and parametric volatility measures, such as implied, realized and model‐based volatility, and show that these volatility processes exhibit an extremely slow mean‐reverting behavior and possible long memory. For this reason, we explicitly model the near‐unit root behavior of volatility and construct median unbiased forecasts by approximating the finite‐sample forecast distribution using bootstrap methods. Furthermore, we produce prediction intervals for the next‐period implied volatility that provide important information about the uncertainty surrounding the point forecasts. Finally, we apply intercept corrections to forecasts from misspecified models which dramatically improve the accuracy of the volatility forecasts. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
While much research related to forecasting return volatility does so in a univariate setting, this paper includes proxies for information flows to forecast intra‐day volatility for the IBEX 35 futures market. The belief is that volume or the number of transactions conveys important information about the market that may be useful in forecasting. Our results suggest that augmenting a variety of GARCH‐type models with these proxies lead to improved forecasts across a range of intra‐day frequencies. Furthermore, our results present an interesting picture whereby the PARCH model generally performs well at the highest frequencies and shorter forecasting horizons, whereas the component model performs well at lower frequencies and longer forecast horizons. Both models attempt to capture long memory; the PARCH model allows for exponential decay in the autocorrelation function, while the component model captures trend volatility, which dominates over a longer horizon. These characteristics are likely to explain the success of each model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Recent studies suggest realized volatility provides forecasts that are as good as option‐implied volatilities, with improvement stemming from the use of high‐frequency data instead of a long‐memory specification. This paper examines whether volatility persistence can be captured by a longer dataset consisting of over 15 years of intra‐day data. Volatility forecasts are evaluated using four exchange rates (AUD/USD, EUR/USD, GBP/USD, USD/JPY) over horizons ranging from 1 day to 3 months, using an expanded set of short‐range and long‐range dependence models. The empirical results provide additional evidence that significant incremental information is found in historical forecasts, beyond the implied volatility information for all forecast horizons. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we introduce the functional coefficient to heterogeneous autoregressive realized volatility (HAR‐RV) models to make the parameters change over time. A nonparametric statistic is developed to perform a specification test. The simulation results show that our test displays reliable size and good power. Using the proposed test, we find a significant time variation property of coefficients to the HAR‐RV models. Time‐varying parameter (TVP) models can significantly outperform their constant‐coefficient counterparts for longer forecasting horizons. The predictive ability of TVP models can be improved by accounting for VIX information. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This paper is concerned with model averaging estimation for conditional volatility models. Given a set of candidate models with different functional forms, we propose a model averaging estimator and forecast for conditional volatility, and construct the corresponding weight-choosing criterion. Under some regulatory conditions, we show that the weight selected by the criterion asymptotically minimizes the true Kullback–Leibler divergence, which is the distributional approximation error, as well as the Itakura–Saito distance, which is the distance between the true and estimated or forecast conditional volatility. Monte Carlo experiments support our newly proposed method. As for the empirical applications of our method, we investigate a total of nine major stock market indices and make a 1-day-ahead volatility forecast for each data set. Empirical results show that the model averaging forecast achieves the highest accuracy in terms of all types of loss functions in most cases, which captures the movement of the unknown true conditional volatility.  相似文献   

15.
This paper examines the benefits to forecasters of decomposing close-to-close return volatility into close-to-open (nighttime) and open-to-close (daytime) return volatility. Specifically, we consider whether close-to-close volatility forecasts based on the former type of (temporally aggregated) data are less accurate than corresponding forecasts based on the latter (temporally disaggregated) data. Results obtained from seven different US index futures markets reveal that significant increases in forecast accuracy are possible when using temporally disaggregated volatility data. This result is primarily driven by the fact that forecasts based on such data can be updated as more information becomes available (e.g., information flow from the preceding close-to-open/nighttime trading session). Finally, we demonstrate that the main findings of this paper are robust to the index futures market considered, the way in which return volatility is constructed, and the method used to assess forecast accuracy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
This paper subjects six alternative indicators of global economic activity to empirically examine their relative predictive powers in the forecast of crude oil market volatility. GARCH-MIDAS approach is constructed to accommodate all the relevant series at their available data frequencies, thereby circumventing information loss and any associated bias. We find evidence in support of global economic activity as a good predictor of energy market volatility. Our forecast evaluation of the various indicators places a higher weight on the newly developed indicator of global economic activity which is based on a set of 16 variables covering multiple dimensions of the global economy, whereas other indicators do not seem to capture. Furthermore, we find that accounting for any inherent asymmetry in the global economic activity proxies improves the forecast accuracy of the GARCH-MIDAS-X model for oil volatility. The results leading to these conclusions are robust to multiple forecast horizons and consistent across alternative energy sources.  相似文献   

17.
Empirical experiments have shown that macroeconomic variables can affect the volatility of stock market. However, the frequencies of macroeconomic variables are low and different from the stock market volatility, and few literature considers the low-frequency macroeconomic variables as input indicators for deep learning models. In this paper, we forecast the stock market volatility incorporating low-frequency macroeconomic variables based on a hybrid model integrating the deep learning method with generalized autoregressive conditional heteroskedasticity and mixed data sampling (GARCH-MIDAS) model to process the mixing frequency data. This paper firstly takes macroeconomic variables as exogenous variables then uses the GARCH-MIDAS model to deal with the problem of different frequencies between the macroeconomic variables and stock market volatility and to forecast the short-term volatility and finally takes the predicted short-term volatility as the input indicator into machine learning and deep learning models to forecast the realized volatility of stock market. It is found that adding macroeconomic variables can significantly improve the forecasting ability in the comparison of the forecasting effects of the same model before and after adding the macroeconomic variables. Additionally, in the comparison of the forecasting effects among different models, it is also found that the forecasting effect of the deep learning model is the best, the machine learning model is worse, and the traditional econometric model is the worst.  相似文献   

18.
We investigate the dynamic properties of the realized volatility of five agricultural commodity futures by employing the high‐frequency data from Chinese markets and find that the realized volatility exhibits both long memory and regime switching. To capture these properties simultaneously, we utilize a Markov switching autoregressive fractionally integrated moving average (MS‐ARFIMA) model to forecast the realized volatility by combining the long memory process with regime switching component, and compare its forecast performances with the competing models at various horizons. The full‐sample estimation results show that the dynamics of the realized volatility of agricultural commodity futures are characterized by two levels of long memory: one associated with the low‐volatility regime and the other with the high‐volatility regime, and the probability to stay in the low‐volatility regime is higher than that in the high‐volatility regime. The out‐of‐sample volatility forecast results show that the combination of long memory with switching regimes improves the performance of realized volatility forecast, and the proposed model represents a superior out‐of‐sample realized volatility forecast to the competing models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A new multivariate stochastic volatility model is developed in this paper. The main feature of this model is to allow threshold asymmetry in a factor covariance structure. The new model provides a parsimonious characterization of volatility and correlation asymmetry in response to market news. Statistical inferences are drawn from Markov chain Monte Carlo methods. We introduce news impact analysis to analyze volatility asymmetry with a factor structure. This analysis helps us to study different responses of volatility to historical market information in a multivariate volatility framework. Our model is successful when applied to an extensive empirical study of twenty stocks. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
We study intraday return volatility dynamics using a time‐varying components approach, and the method is applied to analyze IBM intraday returns. Empirical evidence indicates that with three additive components—a time‐varying mean of absolute returns and two cosine components with time‐varying amplitudes—together they capture very well the pronounced periodicity and persistence behaviors exhibited in the empirical autocorrelation pattern of IBM returns. We find that the long‐run volatility persistence is driven predominantly by daily level shifts in mean absolute returns. After adjusting for these intradaily components, the filtered returns behave much like a Gaussian noise, suggesting that the three‐components structure is adequately specified. Furthermore, a new volatility measure (TCV) can be constructed from these components. Results from extensive out‐of‐sample rolling forecast experiments suggest that TCV fares well in predicting future volatility against alternative methods, including GARCH model, realized volatility and realized absolute value. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号