首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
通过建立半挂汽车列车制动时的力学模型,讨论了半挂汽车列车制动过程各轴载荷的变化规律,得出了半挂汽车列车较理想的制动器制动力分配曲线的参数方程.在此基础上,分析了具有固定分配比值的半挂汽车列车制动时的利用附着系数以及怎样利用各轴的利用附着系数来优化选择半挂汽车列车制动器制动力的分配系数.  相似文献   

2.
基于减速度参数的电子制动力分配控制算法   总被引:1,自引:0,他引:1  
基于两轮车辆模型分析了利用路面峰值附着系数的电子制动力分配系统(EBD)的工作原理,研究了路面附着系数与车轮峰值地面制动力的关系,以后轮最大峰值地面制动力为目标确定了制动力的分配系数.讨论了前轮或后轮达到峰值制动力时车辆减速度实际值与目标值的差异,提出了以车辆减速度和车轮减速度为参数的EBD控制算法,开发了相应的EBD控制流程.在自主研发的防抱制动系统(ABS)中进行了EBD功能集成测试,结果表明:前后轮同时达到峰值附着系数φp的制动力分配曲线与前后轮同时抱死的I曲线一致.一定载荷下,后轮制动力存在最大值,且存在较宽范围的φp,对应最大制动力变化不大,EBD能在ABS作用前有效调节后轮制动力.  相似文献   

3.
通过建立半挂汽车列国制动时的力学模型,讨论了半挂汽车列车制动过程各轴载荷的变化规律,得了了半挂汽车列车较理想的制动劝分型配曲线的参数方程,在此基础上,分析了具有固定分配比值的半挂汽车列车制动时的利用附着系数以及怎样利用各轴的利用附着系数来优化选择半挂汽车列车制动器制动力的分配系数。  相似文献   

4.
为了保证制动安全性,需要将再生制动与原车的ABS系统进行协调控制。基于半挂汽车列车按固定比值分配制动力的制动器结构,提出了适用于三轴车辆的最优能量回收控制策略。根据制动强度、蓄能状态与路面附着条件,分配三轴间机械摩擦与再生制动力,调节摩擦制动力以控制车轮滑移率。利用AMESim和MATLAB/Simulink建立了联合仿真模型。结果表明,协调控制策略可以使制动能量回收率在中低附着路面、中度制动工况下达到13.48%,同时三轴制动时的滑移率均维持在最佳范围内。  相似文献   

5.
利用电涡流缓速器调节车辆制动稳定性   总被引:1,自引:0,他引:1  
利用电涡流缓速器制动力矩可控的特点,将电涡流缓速器的力矩输出进行适当的控制并施加在后轮上,与后轮制动器制动力共同形成了复合制动力.建立了车辆制动力的调节模型,理论上确定了电涡流缓速器的通电电流是车辆前轮制动器制动力的函数.实车模拟结果表明,后轮的地面制动力随前轮制动器制动力的变化关系,能较好地贴近车辆的理想制动力分配曲线,车辆较好地利用了地面的附着能力,改善了车辆的制动稳定性.  相似文献   

6.
为了使电动汽车在制动时既能充分回收制动能量,又能兼顾制动稳定性,针对四轮轮毂电动机驱动电动汽车,提出了一种基于路面识别的复合制动与ABS集成控制策略.以单轮制动模型为研究对象,利用Lagrange插值法估算当前路面的峰值附着系数和最优滑移率;通过比较目标制动强度与峰值附着系数,将制动工况分为常规制动和防抱死制动;针对常规制动向防抱死制动过渡的工况,通过一种在ABS触发前合理减少再生制动的方法,避免直接撤销再生制动带来的ABS频繁退出和启动.在MATLAB/Simulink环境下建立了仿真模型,仿真结果表明:路面识别算法识别准确度较高;复合制动与ABS集成控制策略能够合理地分配再生制动力与液压制动力,实现车轮的防抱死控制.  相似文献   

7.
矿用汽车制动时方向稳定性及制动力分配   总被引:1,自引:0,他引:1  
分析矿用汽车制动时,前轮抑死或后轮抑殆以及前后轮同步抱死三种工况下,车辆的转向能力和稳定性;并在此基础上考虑附着系数的作用和阻力的作用后,系统地定量讨论了矿用汽车制动力的分配。  相似文献   

8.
具有制动力调节阀的汽车制动性能的计算机模拟计算   总被引:3,自引:0,他引:3  
通过对具有制动力调节阀的汽车制动系统的全面研究,建立了合理的整车动力学模型、轮胎与路面纵向附着系数模型以及制动系模型,给出了一种关于车轮抱死前与抱死后汽车制动性能的计算方法,并分别对汽车安装制动力调节阀前、后的制动性能进行了计算机模拟计算。由结果分析可知,安装制动力调节阀有利于改善汽车制动性能,其所建数学模型具有一定的普遍性,适用于程序设计。  相似文献   

9.
 在ADAMS/Car中建立三轴重型载货汽车的虚拟样机模型,包括前后悬架、动力总成、转向系统、稳定杆、制动系、轮胎及车身,同时还考虑了轮胎、悬架弹簧、减振器等部件的非线性.利用Matlab/Simulink建立了基于滑移率的防抱死制动系统ABS模糊控制系统.分别在高附着路面、低附着路面及分离系数路面上进行不同载重下的直线制动仿真,计算汽车制动时的动态特性,并与无ABS的常规制动进行比较.结果表明,本文设计的基于滑移率的ABS模糊控制策略对于重型汽车具有良好的控制效果,使车轮的滑移率控制在最佳滑移率附近,防止了车轮的抱死,在制动距离、制动时间及制动稳定性方面都有较突出的优势.  相似文献   

10.
基于横摆力矩的汽车制动稳定性模糊控制   总被引:3,自引:0,他引:3  
为避免汽车在对开路面制动时出现跑偏或侧滑等危险工况,提出了一种利用横摆力矩方法控制汽车制动稳定性的控制模式,设计了模糊控制器,按照所确定的控制策略进行了仿真。仿真与试验结果对比表明,利用所提出的汽车制动稳定性横摆力矩模糊控制方法,能减少汽车在路面附着系数相差较大的对开路面制动时的侧滑和激转,并使汽车在制动偏驶后能快速恢复到预期行驶车道,避免了汽车制动力不平衡引起的危险工况。  相似文献   

11.
介绍惯性制动系统工作原理,建立全挂汽车列车制动力学模型,建立了牵引车、全挂车制动力分配优化设计模型,该模型以实际附着效率曲线与理想附着效率曲线之间的面积差最小为目标函数,以GB 12676—1999中制动力分配要求为约束条件.利用此模型对某汽车列车进行了优化设计,结果表明,该方法对全挂汽车列车制动系统设计具有一定指导意义.  相似文献   

12.
轮胎与地面间的附着系数是影响车辆安全性能的重要因素.在理论分析的基础上,提出了基于线控制动的路面附着系数检测方法,利用踏板位置传感器估计制动器制动力,采用MMA6260Q加速度传感器检测车辆制动减速度,由制动器制动力与地面制动力判断轮胎运动状态,根据车辆载荷转移公式得到车轮法向载荷,获得进入滑动区域的利用附着系数,并由此得到地面附着系数.分析显示该检测方法可以较准确地识别轮胎与地面附着系数,具有一定的实用价值.  相似文献   

13.
针对分布式电驱动汽车在复杂路面紧急制动时引起车轮突然滑转或抱死而导致的车辆失去转向能力甚至甩尾的问题,提出了一种考虑车辆侧向稳定性的电液复合制动滑移率控制策略。滑移率控制采用了滑模极值搜索算法,基于分层结构,即上层为期望制动力矩计算模块,中层为考虑执行器带宽的动态控制分配模块,下层为电液复合执行器,同时还考虑了位置和速率约束且应用主动前轮转向(AFS)系统补偿侧向稳定性。基于MATLAB/Simulink建立了7自由度整车模型,在分离路面典型制动工况下对控制算法进行了验证。结果表明:所提控制策略可以有效减小制动距离,保证车辆侧向稳定性;滑移率控制器可以自适应于路面附着系数的变化。  相似文献   

14.
为使汽车在不同工况及路面时都能使前后轴制动力接近理想的制动力分配曲线,提高汽车运行的安全性,提出了用数字高速开关阀及单片机组成制动力电液比例分配装置,实现前后制动分泵的压力按比例进行分配,装置可根据汽车的载重量,确定与之相应的标准制动分配曲线,实施制动时,由压力传感器检测制动器出口压力,由PWM信号控制的两个高速开关阀,适时调节前、后制动分泵中的压力,跟踪标准制动力分配曲线,理论分析及台架试验表明,文中提出的方法可行,基本上能实现四轮同时制动而不抱死,有工业应用前景。  相似文献   

15.
为实现半挂汽车列车在转弯制动时的横向稳定性,建立了半挂汽车列车非线性动力学仿真模型. 利用实车系统的稳态转向试验与直线制动试验,验证了模型的可靠性. 对在低附着路面上行驶的半挂汽车列车转弯制动失稳机理进行了分析. 设计了以牵引车和半挂车的补偿横摆力矩来修正横向稳定性的控制策略,仿真结果表明,控制方案可有效地纠正半挂汽车列车在低附着路面上转弯制动的过度转向,改善车辆的横向稳定性.  相似文献   

16.
分析了电驱动车辆制动控制中能量回馈与制动稳定性之间的矛盾,提出了一种兼顾制动回馈控制及车轮防抱死控制的基于滑移率试探的电动汽车制动控制策略.在制动过程中根据滑移率是否在稳定区域,实时控制电机制动力与液压制动力,在保证制动稳定性的同时提高制动能量回收能力.该控制策略不依赖于路面辨识、制动力估计等复杂算法.在不同制动工况下的仿真结果表明: 采用该策略能获得接近最优的制动回馈效率,并在大制动力工况中实现了车轮的防抱死控制.  相似文献   

17.
为解决缓速器安装于半挂汽车列车传动系统时存在"冲撞"严重的问题,提高缓速工况时制动能量的回收率,提出了一种安装于半挂车前轴两侧轮毂内的能量回收型缓速器方案。根据GB/T 32692-2016中对缓速制动性能的规定,对缓速器参数进行了匹配,制定相应的缓速器控制策略,根据控制策略中对电动半挂汽车列车质量的需求,对质量估计算法进行研究,并基于粒子群算法对小制动强度时制动力矩分配进行探讨。通过Matlab/Simulink与TruckSim搭建了联合仿真平台,对质量估计算法、电动半挂汽车列车经济性和制动安全性进行仿真验证。仿真结果表明:质量估计算法能够准确估计电动半挂汽车列车质量;能量回收型缓速器能够满足电动半挂汽车列车缓速需求,提高制动能量回收率,且能够有效解决电动半挂汽车列车缓速制动时的"冲撞"问题。相关研究能够解决"冲撞"问题,提高制动安全性,为提高电动半挂汽车列车缓速制动时制动能量的回收率提供了新思路。  相似文献   

18.
依ECE法规进行汽车制动力分配新方法   总被引:10,自引:0,他引:10  
根据ECE法规要求得到了汽车制动力分配系数β与各种路面上制动强度的关系,提出了用制动力分配系数控制曲线进行制动力分配的新方法,即根据质心位置和重心高度可方便地得到满足ECE法规制动力分配系数。分析了结构参数对汽车制动力分配的影响,分析表明:随着重心高度增加,满足ECE法规的制动力分配范围减小;而轴荷分配的变化对制动力分配影响不大。给出了不满足ECE制动法规时制动力分配的建议。  相似文献   

19.
装用电涡流缓速器的汽车制动性能分析   总被引:8,自引:4,他引:8  
为掌握汽车上装用电涡流缓速器的制动性能及其对汽车制动性能的影响,建立装用缓速器的汽车制动时动力学方程式;结合道路试验,从下坡能力和平路上的减速能力两个方面考察电涡流缓速器的制动效能;通过道路试验,考察在中、高车速下,电涡流缓速器对汽车紧急制动的影响;从理论上分析了装用电涡流缓速器后,理想的汽车前、后车轮制动力的分配曲线的改变情况及其在紧急制动时对汽车制动稳定性影响。  相似文献   

20.
为了准确估计不同路况下的路面附着系数,提高汽车行驶的安全性与稳定性,提出了一种在制动工况下基于前后轮轮速和制动力矩估计路面附着系数的方法。首先,考虑汽车前后轴荷转移,在Matlab/Simulink软件中完成建模操作,创建关于双轮车辆制动的动力学模型;其次,将控制目标确定为汽车前轮以及后轮的理想和实际滑移率,建立理想制动力矩滑模控制器,对于汽车滑模控制器存在的抖振现象,通过积分切换面对其进行处理;最后,以前后轮轮速和制动力矩作为输入进行扩张状态观测器的设计,利用这一观测器观测路面附着系数相关值。结果表明,各种路况中的路面附着系数都可以通过上述手段进行准确估计,扩张状态观测器能够抵抗外界干扰,鲁棒性强。将扩张状态观测器用于路面附着系数识别的良好结果可为汽车稳定性控制系统的设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号