首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 482 毫秒
1.
高速电机转子临界转速计算与振动模态分析   总被引:1,自引:0,他引:1  
采用3D有限元方法,计算磁力轴承转子系统临界转速并分析振动模态,利用磁悬浮转子系统自身悬浮特性进行激振实验,确定有限元模型中磁力轴承支承刚度,有限元法计算的临界转速与转子系统实际运行临界转速相一致.研究表明,磁力轴承刚度对转子临界转速影响很大,可以通过改变磁力轴承刚度和转子材料来调整临界转速;为了避免转子超越弯曲模态的临界转速,转子轴伸长度应控制在安全范围内.  相似文献   

2.
双转子多盘转子系统的动态特性   总被引:3,自引:0,他引:3  
采用有限元法建立了双转子-轴承系统的动力学模型,计算分析了轴承支承刚度和内外转子的转速比对系统临界转速的影响,并对计算结果的正确性进行了验证.研究发现:各支承位置支承刚度的增大将使系统临界转速逐渐增大,当增大到一定程度时对临界转速的影响并不大,各支承刚度对各阶临界转速的影响程度并不一致;另外,中介轴承对系统临界转速的影响并不大;以内转子为主激励的同步反进动时,系统临界转速随着转速比的升高而降低,正进动临界转速随着转速比的升高而增大;而以外转子为主激励的同步反进动时的临界转速表现出相反的规律.  相似文献   

3.
齿轮轴系弯扭耦合振动特性   总被引:2,自引:1,他引:1  
以某大型压缩机转子系统为研究对象,计及机组和支承的弹性变形和齿轮的时变啮合刚度,结合转子动力学,建立了齿轮转子系统的有限元模型,综合分析了齿轮转子系统的弯扭耦合振动特性.探讨了膜片联轴器、啮合刚度以及支承刚度、支承阻尼对齿轮转子系统固有频率和稳定性的影响.结果表明,啮合刚度对系统临界转速的影响不大,而对系统处于高阶模态时的稳定性影响较显著;膜片联轴器的中间轴段质量、膜片数目、膜片厚度等以及支撑的刚度、阻尼对系统的临界转速和稳定性都有一定的影响.  相似文献   

4.
高速透平膨胀机临界转速的计算与分析   总被引:2,自引:0,他引:2  
为了保障高速透平膨胀机的稳定性,针对高速透平膨胀机转子临界转速的确定问题,分别讨论了Prohl递推法、Riccati传递矩阵法和有限元QZ(FEQZ)法在各向异性的弹性支承轴承转子系统阻尼临界转速计算中的优缺点.考虑到透平膨胀机实际的结构和应用情况,建议气体轴承支承高速透平膨胀机转子临界转速的计算方法采用FEQZ法,同时运用Matlab语言分模块设计了计算程序,大大简化了编程过程,提高了计算精度.在此基础上,通过在实际工况参数范围内的实例,分析了某透平膨胀机转子支承刚度和阻尼对转子系统阻尼临界转速的影响,并与工程实验数据进行了对照,从而验证了模型与分析计算的可靠性.  相似文献   

5.
转子系统支承刚度对转子系统的临界转速有很大影响,由此推出一种转子整体刚度可调节的新型转子支承系统.本系统设计了四轴联动机构、对称式弹性机构以及变刚度机构,可以对转子系统进行精确定位,增加转子系统的稳定性,延长转子系统的寿命,并且该支承可对转子支承的整体刚度进行调节,从而对转子系统的临界转速进行控制.在这种新型的支承方式下,运用传递矩阵法对支承机构转子系统的临界转速可调节性作了理论分析,并运用有限元法以及试验方法对其分析结果作了相应验证.结果证明该新型转子支承系统可有效地调节转子系统的临界转速.  相似文献   

6.
介绍了非定常情况下,滑动轴承动压油膜的动态特性对转子支承刚度的作用.在此基础上建立了基于油膜动力学特性及底座支承刚度动力学模型的计算方法,并用于传递矩阵法求解转子系统的临界转速中.计算结果表明,随着系统的支承刚度下降,转子系统的临界转速是下降的  相似文献   

7.
从电磁和机械两方面综合考虑,基于弹性力学理论,运用有限元分析方法建立护套和永磁体应力计算模型,计算永磁体和护套的基本尺寸和过盈量.并利用轴对称的有限元模型推算出转子系统的动力学方程,进而通过有限元仿真分析了转子临界转速和振动模态以及刚度对临界转速的影响.  相似文献   

8.
为了调整某轻型单轴式燃气轮机转子支承系统临界转速和控制振动,理论计算和实验分析了该燃气轮机转子支承系统动力特性.结合该燃气轮机的具体结构,设计了弹性支承和多孔质挤压油膜阻尼器(PSFD),调整其临界转速和控制振动.将弹性支承和PSFD安装在该燃气轮机上进行开车实验的结果表明,理论计算与实验结果吻合得很好,临界转速调整到了预期值,阻尼器的减振效果突出.弹性支承和PSFD在实际燃气轮机上获得了成功应用.  相似文献   

9.
离心机动特性的计算方法及其应用   总被引:1,自引:0,他引:1  
为提高离心机动力特性的设计水平 ,讨论了典型离心机的转子 -支承系统建模方法 ,利用阻抗匹配法 ,配合 Ric-cati传递矩阵法及模态分析法对它的动特性进行计算 ,通过对转子 -支承系统的振型分析 ,明确了主要另部件对各阶临界转速的影响 ;同时 ,对该机的停机过程做了动特性测试 ,计算和实验取得了相符的结果。据此 ,成功地调开了该机在工作转速范围内的临界转速 ,并提出了该机驱动结构进一步改进的意见。为离心机动特性设计提供了理论方法  相似文献   

10.
针对动力涡轮转子中存在的悬臂分支结构,研究了柔性转子动力学特性随分支结构参数的变化。建立了带分支转盘系统的转子动力学模型,利用拉格朗日方程推导了其运动微分方程,采用数值方法对不同法兰盘偏置量、分支轴长度、弹性支承刚度下转子系统的临界转速、振型和不平衡响应进行了计算和比较。研究表明,改变分支结构参数对系统不同振型临界转速的影响不同,通过降低法兰盘偏置量、增大分支轴长度,可以显著地减小转子的弯曲临界转速,同时降低转子的抗弯刚度,造成涡轮盘处的不平衡响应增大。  相似文献   

11.
本文采用软件仿真与实验分析相结合的方法,研究了自制旋转机械故障模拟试验台转子的振动特性。使用Solidworks软件对转子进行三维实体建模,并在Altair Hyper Mesh软件中划分网格,导入到ANSYS Workbench软件进行后处理分析。首先通过静力学分析获得双盘转子变形与应力分布情况;考虑陀螺效应的影响,通过模态分析获取固有频率及振型云图;生成Campbell图,分析转子在设定转速区间内振动分量的变化特征;通过谐响应分析获取特定频域内的动态响应。最后进行实验模态分析,并与仿真结果进行对比,从而验证有限元模型的准确性。研究表明:转轴轴肩位置处存在一定程度的应力集中;临界转速远大于工作转速,可有效避免共振;该结构动刚度良好符合设计要求。本文可为该类型转子的振动特性分析提供参考,并为旋转机械故障的模拟实验起到了一定的指导作用。  相似文献   

12.
疲劳、材料缺陷等因素会导致转子出现不同程度的裂纹。为分析裂纹对转子系统动态特性的影响,本文建立了裂纹转子系统的刚度矩阵,并通过有限元仿真和ZT-3实验台开展了裂纹角度和转速对裂纹转子系统动态特性研究。结果表明:在不同角度的裂纹对转子动态特性的影响分析中,45°裂纹转子系统较30°裂纹转子系统的振动响应剧烈、范围大、轴心轨迹变形程度大,波形的频率叠加现象更为明显,更多的高倍频和分数倍频被激发;在转速为(2000rpm,4000rpm)范围内,随着转速的增加,系统的时域波形逐渐趋于平稳,频率叠加现象减少,振动范围逐渐扩大,轴心轨迹逐渐变为规则的椭圆形,在3200rpm附近存在着系统的临界转速;通过实验得出的裂纹转子系统动态特性与仿真结果吻合,验证了仿真的正确性。  相似文献   

13.
转子系统中螺栓联接结构轴向联接刚度的不确定性对转子系统动力学特性具有重要影响,为此,在构建螺栓联接结构有限单元基础上,建立了转子系统整体有限元模型,采用非嵌入多项式混沌展开法分析轴向联接刚度不确定性对转子系统动力学特性的影响.结果表明:轴向联接刚度在一定范围内变化会导致临界转速及临界转速对应的稳态响应幅值偏离预期,随着轴向刚度不确定性的标准差增大,盘竖直方向稳态响应均值降低.研究结果可为螺栓联接转子的设计提供理论参考.  相似文献   

14.
随着工业的发展,对于行星传动系统均载和动载亦提出了更高的要求,在传统的内齿圈结构的基础上薄壁柔性内齿圈及采用弹性支撑等类型的柔性内齿圈得以设计与应用。各类型内齿圈的结构特点与柔性差异及对系统均载和动载的影响甚少有文献报道,造成了系统传动构件在设计选用时的盲点。通过搭建各内齿圈结构有限元模型,对比分析了各内齿圈的结构特点与柔性差异,结合行星传动系统动力学模型,获得了考虑系统误差时不同内齿圈结构下系统均载系数和动载系数的差异。分析表明传统内齿圈的柔性最差,系统的均载系数和动载系数较采用柔性内齿圈结构明显偏大。薄壁柔性内齿圈结构的均载效果最好且波动平滑,但系统的各支路的动载系数波动增大。弹性销内齿圈结构综合时变啮合刚度波动剧烈,处于销钉位置时刚度明显增大,系统的均载系数降低且杂乱无章,动载系数增大。  相似文献   

15.
以FB-1500型涡轮分子泵为分析原型,依据分子泵转子系统形状、尺寸、材料、支承形式以及质量分布,建立了分子泵转子系统几何模型.采用有限元方法对转子系统进行模态分析,获得了转子系统的临界转速和振型.模态分析结果表明:泵运行在5~6阶固有频率之间,但未完全满足柔性转子安全设计要求,仍然存在安全隐患.提出改进转轴惯性矩、轴承支撑位置来提高转子系统的固有频率,以确保分子泵的安全运行.获得的转子系统模态,对涡轮分子泵启动加速和停车减速过程控制策略制定、减弱或回避共振带来的安全隐患、提高分子泵使用寿命具有参考价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号