首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
设计了一种钟摆式搅拌槽,对槽内流场和混合过程进行了数值模拟,分析了槽内流体的流动特性及加料方式对混合效果的影响。并对混合效率进行了评定.结果表明:钟摆式搅拌槽内桨叶上方区域的混合比桨叶下方要好;考察加料位置的影响时,自由液面加料的混合效果优于底部加料;整体来讲,自由液面加料时钟摆式搅拌槽的混合效率比较高,与三窄叶翼形搅拌桨相接近,槽底部加料时的混合效率要低一些,与六直叶圆盘涡轮桨相当.  相似文献   

2.
针对当前混合澄清萃取槽存在的问题,提出了改进的新型混合澄清萃取槽.采用专业的流体力学数值模拟软件ANSYS/FLUENT,对新型萃取槽内流场情况进行了模拟研究.结果表明,在油水两相流速分别为0.22和0.11 m/s,混合室搅拌转速为800 r/min,澄清室搅拌转速为20 r/min时,与传统萃取槽相比,在搅拌作用下,新型萃取槽澄清室内桨叶附近的混合带更窄,两相分离效果更佳;混合室内桨叶上下方流场呈涡旋流,与六直叶涡轮桨搅拌特点相符.  相似文献   

3.
以高黏物系混合为背景,采用数值模拟方法,选用高黏强剪切稀化流体为研究对象,考察了桨叶几何结构对螺带-螺杆搅拌槽内的流场及剪切特性的影响,研究内容包括流场精细结构(轴向速度及剪切速率分布)及搅拌槽宏观特性参数(轴向循环流量及体积平均剪切速率).计算发现,对搅拌槽内轴向速度影响最为显著的几何结构参数为螺带宽度(w_(HR)),随着w_(HR)/d_(HR)由0.05增大至0.20,最大向下无量纲轴向速度(u_z/u_(tip))_(maxD)由0.09增大至0.34;w_(HR)/d_(HR)=0.13时,搅拌槽内轴向循环流量Qz达到最大;搅拌槽内剪切速率与桨叶宽度及直径成正比,与螺距成反比;壁区影响最为敏感的为桨叶直径;s_(HR)/d_(HR)=0.4时,搅拌槽内体积平均剪切速率最高.最后,综合考虑搅拌槽内流场及剪切特性的几何效应,给出了螺带-螺杆搅拌桨设计建议.  相似文献   

4.
为了揭示错位Rushton桨的混合机理,采用计算流体动力学方法,对层流和湍流水动力学特性进行了研究.首先通过与文献中实验结果的比较,验证了所建数值模型及模拟方法的可靠性,然后重点分析了错位桨搅拌槽内的尾涡、流场和搅拌功耗.结果表明:与标准Rushton桨相比,相同转速时,错位桨能减小尾涡尺寸,降低搅拌功耗,而且桨叶宽度越小越有利,但过低的桨叶宽度不利于增大流体速度及速度分布的均匀程度.相同搅拌功耗时,桨叶宽度为3 D/20和D/5(D为搅拌桨直径)时错位桨的搅拌效果明显优于标准搅拌桨,两者对流体速度提高的幅度相当,但桨叶宽度为3 D/20时的尾涡尺寸小,故为推荐桨叶宽度.  相似文献   

5.
层流搅拌时,搅拌槽的混合效率普遍较低。为了改善搅拌效果,在桨叶上下方混合隔离区处对称布置了4块隔板,以截断隔离区内流体运动轨迹的周期性,并以甘油为介质,对有无隔板时Rushton桨在层流状态下的流动与混合过程进行了研究,分析了槽内流场结构、速度分布及功率消耗情况。结果表明,隔板不仅能改变槽内流体的流型,增强轴向循环能力,提高混合效果,而且消耗的功率低,仅为同条件下无隔板时功率消耗的76%。  相似文献   

6.
为了提高搅拌槽内气体的分散能力,设计了一种错位CD-6桨,采用计算流体动力学方法对其气液混合性能进行了研究.分析了不同转速和通气量时搅拌槽内的流场、气含率和搅拌功耗,并与标准CD-6桨的数值模拟及相关文献中的实验测试结果进行对比.研究结果表明:标准CD-6桨的模拟结果与实验及文献结果符合较好,验证了所建模型和模拟方法的可靠性;与标准CD-6桨相比,相同操作条件下,错位CD-6桨搅拌槽内流体的湍动程度高,气体分布均匀,搅拌功耗略低,而且通气后的功率下降幅度小,因而更适用于气液混合操作.  相似文献   

7.
为了研究湿喷机喷嘴出口混凝土的均匀程度,根据湿喷机喷嘴流场的结构建立物理模型,再根据流体动力学方程建立混合流体在喷头内部流场中的力学模型,得到混合流体在喷嘴流场出口的理论速度和理论压力。然后利用Gambit软件对湿喷机喷嘴内流体进行三维建模,结合CFD软件Fluent选用RNG湍流模型与多相流中的欧拉模型,对喷嘴内气固两相流进行仿真计算,得到喷嘴内流体的压力、速度云图和相体积分数云图。在此基础上分析混合流体在出口截面上各相的体积分数,得到了混合物中空气的均匀度为93.88%。研究结果表明:通过将理论值与仿真值进行对比,发现混合流体的理论值与仿真值较为接近;在喷嘴出口处混凝土和空气混合的很均匀;通过混凝土喷射试验验证了仿真计算的正确性,且现有的喷嘴结构具有一定的合理性,并为今后喷嘴结构的改进与优化提供依据。  相似文献   

8.
基于Fluent软件,采用VOF和DPM模型对KR脱硫搅拌槽内的流场和脱硫剂颗粒运动进行数值模拟,研究搅拌槽内的流场特性和搅拌头的转速对颗粒运动轨迹的影响。结果表明,搅拌初期槽内自由液面中心在下凹的过程中伴有上涌和回落的现象;流场稳定后,流体在壁面处形成上、下对称的两个涡流,而在搅拌头的底部容易形成死区;提高搅拌头的转速有利于提高槽内流场的轴向速度,有利于脱硫剂颗粒在槽内均匀悬浮,从而提高脱硫效果。  相似文献   

9.
为了研究高比转数离心泵内部的空蚀流动,采用完整空化模型和混合流体两相流模型对比转数为177的离心泵全流道内空蚀流动进行定常数值模拟.根据计算结果,分析液相和空泡相主要流动特征及叶片上的静压分布,揭示叶轮内空蚀两相流场的内在特征,结果表明预测得到的空蚀现象与实际离心泵受空蚀现象的影响与破坏情况基本一致.  相似文献   

10.
固-液搅拌槽内槽底流场的CFD模拟   总被引:11,自引:0,他引:11  
使用计算流体力学CFD软件CFX-5.5.1对搅拌槽内固液流场进行了数值模拟。搅拌槽直径T=476mm, 槽内均布四块挡板,搅拌桨为CBYⅢ桨。两相物系采用玻璃珠-水体系,固体体积分数Фv为5.4%。文中使用标准κ-ε模型计算了清水与固液两相的流场,考察了槽内的流场的分布对固体颗粒悬浮状况的影响,同时把槽底的清水和Фv为5.4%的固液两相模拟结果与实验结果进行了对比,模拟结果与实验较吻合。  相似文献   

11.
熔体振动输运中流质混合的模拟及统计分析   总被引:1,自引:0,他引:1  
对标准计量型螺槽内聚合物熔体在振动输运过程中的流质混合进行了数值研究.通过计算流体力学(CFD)软件Polyflow对振动输运流场进行数值计算和仿真模拟,运用统计学方法分析了振动输运流场中反映分布混合效果的流质拉伸率.统计结果显示,振动力场有助于提高输运熔体的均化程度,改善分布混合效果,在模拟频率范围内混合程度随频率提高而增强,但振幅存在最佳值.  相似文献   

12.
固相浓度对含尘离心风机磨损规律的影响   总被引:1,自引:0,他引:1  
利用气-固两相流动的“双相耦合”模型,视固相为具有稳定流体性质的“拟流体”,则气、固两相流场成为真实流体与拟流体两种组分迭置的混合场。考察了在固相为稀相条件下,不同粒子浓度对气流场的影响,并应用“单相耦合”模型,分别算出固粒运动轨迹,初步探明固相浓度对叶轮磨损规律的影响。  相似文献   

13.
涡轮桨搅拌槽内混合过程的数值模拟   总被引:8,自引:0,他引:8  
文中采用FLUENT软件对六直叶涡轮桨搅拌槽内的混合过程进行了数值模拟,选用多重参考系法(MRF)及标准kε模型,将速度场与浓度场方程分开进行求解,所得的混合时间的模拟结果与实验值相吻合。同时用计算机流体力学(CFD)方法研究了不同的加料点、监测点位置及操作条件对混合时间的影响规律,模拟结果表明:混合过程主要由搅拌槽内的流体流动所控制,混合时间与加料点及监测点位置密切相关。研究结果对于工业搅拌反应器的优化具有一定的参考意义。  相似文献   

14.
针对搅拌槽内非牛顿流体混合不均匀问题,基于无接触式粒子图像测速技术(PIV)研究了四斜叶桨带挡板搅拌槽内非牛顿流体流场流动状况.PIV试验采用透明的黄原胶溶液作为非牛顿流体.试验结果表明:搅拌转速的变化不仅改变流场的流型,也改变流场的流速分布、湍动能分布及涡量分布的位置和大小;随着搅拌转速的减小,主循环流和反向小循环流的涡心向上偏移,同时在向上偏移过程中,涡型逐渐减小,电机驱动功率也随着搅拌转速的减小而减小;黄原胶溶液质量分数的增大影响了流场的主循环流的流动范围,使搅拌桨下部区域的流动强度明显减小,同时也导致了整个流场流速降低和流体流动传递距离减小,故高搅拌转速是非常有必要的.  相似文献   

15.
运用计算流体力学(CFD)技术对不同桨叶参数的侧入式搅拌槽内流场进行了数值模拟。模拟结果表明:搅拌槽内流场产生分层现象,下层流场为内部围绕搅拌槽中心的环形上升流和外部沿搅拌槽壁面的低速下降流组成的高速循环流,上层流场为与下层流场方向相反的低速循环流;在相同搅拌功率输入下,增大桨叶直径能够增加搅拌槽底部流体的动能,但会抑制搅拌槽上部流体的动能;叶片倾角为45°时桨叶的轴流性能最好,叶片个数为4时桨叶的搅拌效率最高。  相似文献   

16.
粉煤灰预处理浆液槽在混合的同时实现预反应,并对颗粒细化,为后续预脱硅反应奠定基础.其浆液调配的准确度与料浆混合的均匀度将直接影响粉煤灰预脱硅效率,继而影响高铝粉煤灰制备氧化铝的产品质量及能耗.结合某单位生产现场的物料细化实验数据,采用实验室搅拌实验验证的数值模拟方法对该单位浆液槽内的流场进行分析,在此基础上对其操作参数进行优化.研究发现优化转速与物料粒径呈正相关关系,搅拌功率随颗粒粒径、初始固相体积分数及搅拌转速的增加而增大,其中搅拌转速对功率的影响最大,优化后搅拌能耗可降低30%,左右.  相似文献   

17.
离心泵空蚀湍流的非定常数值模拟   总被引:2,自引:1,他引:1  
为了研究离心泵内部的空蚀流动,结合Fluent软件中的空蚀模型和混合流体两相流模型,对离心泵流道内的三维湍流空蚀流场进行非定常数值模拟.根据模拟计算结果的液相和空泡相流动特征,预测离心泵在设计工况下运行时流道内空蚀发生的位置和程度;通过分析空蚀发生过程中叶片上的压力分布,揭示出离心泵流道内空蚀流场的内在特性,并可对泵的性能进行预估.  相似文献   

18.
将折射率匹配技术与粒子图像测速技术结合,测量了固液搅拌槽内桨叶启动过程中的两相流动特性。实验所用搅拌槽为平底方槽,搅拌桨为45°四斜叶桨,桨叶搅拌雷诺数389~2 332,固体颗粒的最大体积分数15%。实验考察了桨叶操作方式、搅拌转速和固含率对搅拌槽内瞬态颗粒分布和颗粒床层处瞬时流场的影响规律,结果表明:相同转速下桨叶为上提操作时流体对颗粒床层的侵蚀作用强于下压操作,颗粒开始悬浮的时间早,但悬浮高度较低;随着搅拌转速的增加,流体对颗粒床层的侵蚀作用增强,体系达到稳态后搅拌槽内颗粒云的均一度和高度也出现上升趋势;固含率从5%增加至15%时,搅拌槽内悬浮起的颗粒数量增加;流体侵蚀颗粒床层的临界速度范围在0.1~0.25 m/s。  相似文献   

19.
自行设计了具有单层倾斜式四叶片搅拌器的稀土分离萃取槽,采用FLUENT软件建立了稀土萃取槽三维几何模型,并利用多重参考系模型对5种方案(即搅拌器安装高度H分别为L/12=50 mm、3L/12=150 mm、5L/12=250 mm mm、7L/12=350 mm、9L/12=450 mm)下萃取槽内流体流动轨迹、流速分布、低速区体积分数及混匀时间等进行了仿真研究。研究发现:搅拌器高度为5L/12时,萃取槽内Z轴方向上流体流速分布合理,无明显低速区;搅拌器高度为7L/12时,搅拌槽内低速区体积分数最低,仅为0. 936%;搅拌器高度为5L/12时,萃取槽内各监测点混匀时间最短、在19. 3 s~26. 2 s之间。研究结果表明:所设计的稀土萃取槽的搅拌器高度在5L/12~7L/12范围内,综合性能良好,可供稀土萃取相关领域的研究和设计参考。  相似文献   

20.
利用高速摄像技术对过渡流搅拌槽内单颗粒的运动特性进行捕捉,分析了搅拌雷诺数及桨叶离底高度对颗粒悬浮运动的影响规律,并使用二维粒子图像测速技术得到搅拌槽内的流场信息。研究结果表明:颗粒的临界悬浮转速随桨叶离底高度的降低而降低;桨叶离底高度对颗粒在槽底的运动影响较大;颗粒在垂直离底悬浮后,于桨盘下方附近螺旋上升或作持续的螺旋状圆周运动;搅拌雷诺数升高对颗粒垂直上升的最大高度和最大速度影响较小,但会减小垂直上升过程中桨盘的转动圈数;颗粒螺旋上升是由于轴向流场在颗粒停滞位置向两侧产生了分叉;颗粒的悬浮主要是由流体的主体流动引起的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号