首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Japan started the national project “COURSE 50” for CO2 reduction in the 2000s. This project aimed to establish novel technologies to reduce CO2 emissions with partially utilization of hydrogen in blast furnace-based ironmaking by 30% by around 2030 and use it for practical applications by 2050. The idea is that instead of coke, hydrogen is used as the reducing agent, leading to lower fossil fuel consumption in the process. It has been reported that the reduction behavior of hematite, magnetite, calcium ferrite, and slag in the sinter is different, and it is also considerably influenced by the sinter morphology. This study aimed to investigate the reduction behavior of sinters in hydrogen enriched blast furnace with different mineral morphologies in CO–CO2–H2 mixed gas. As an experimental sample, two sinter samples with significantly different hematite and magnetite ratios were prepared to compare their reduction behaviors. The reduction of wustite to iron was carried out at 1000, 900, and 800°C in a CO–CO2–H2 atmosphere for the mineral morphology-controlled sinter, and the following findings were obtained. The reduction rate of smaller amount of FeO led to faster increase of the reduction rate curve at the initial stage of reduction. Macro-observations of reduced samples showed that the reaction proceeded from the outer periphery of the sample toward the inside, and a reaction interface was observed where reduced iron and wustite coexisted. Micro-observations revealed three layers, namely, wustite single phase in the center zone of the sample, iron single phase in the outer periphery zone of the sample, and iron oxide-derived wustite FeO and iron, or calcium ferrite-derived wustite 'FeO' and iron in the reaction interface zone. A two-interface unreacted core model was successfully applied for the kinetic analysis of the reduction reaction, and obtained temperature dependent expressions of the chemical reaction coefficients from each mineral phases.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):1940-1948
The evolution of inclusions and the formation of acicular ferrite (AF) in Ca–Ti treated steel was systematically investigated after Mg and La addition. The inclusions in the molten steel were Ca–Al–O, Ca–Al–Mg–O, and La–Mg–Ca–Al–O after Ca, Mg, and La addition, respectively. The type of oxide inclusion in the final quenched samples was the same as that in the molten steel. However, unlike those in molten steel, the inclusions were Ca–Al–Ti–O + MnS, Ca–Mg–Al–Ti–O + MnS, and La–Ca–Mg–Al–Ti–O + MnS in Mg-free, Mg-containing, and La-containing samples, respectively. The inclusions distributed dispersedly in the La-containing sample. In addition, the average size of the inclusions in the La-containing sample was the smallest, while the number density of inclusions was the highest. The size of effective inclusions (nucleus of AF formation) was mainly in the range of 1–3 μm. In addition, the content of ferrite side plates (FSP) decreased, while the percentage of AF increased by 16.2% due to the increase in the number of effective inclusions in the La-containing sample in this study.  相似文献   

3.
Continuous-drive rotary friction welding was performed to join cylindrical specimens of carbon steel (EN24) and nickel-based superalloy (IN718), and the microstructures of three distinct weld zones—the weld interface (WI)/thermo-mechanically affected zone (TMAZ), the heat-affected zone (HAZ), and the base metal—were examined. The joint was observed to be free of defects but featured uneven flash formation. Electron backscatter diffraction (EBSD) analysis showed substantial changes in high-angle grain boundaries, low-angle grain boundaries, and twin boundaries in the TMAZ and HAZ. Moreover, significant refinement in grain size (2–5 μm) was observed at the WI/TMAZ with reference to the base metal. The possible causes of these are discussed. The microhardness profile across the welded joint shows variation in hardness. The changes in hardness are ascribed to grain refinement, phase transformation, and the dissolution of strengthening precipitates. The tensile test results reveal that a joint efficiency of 100% can be achieved using this method.  相似文献   

4.
This study introduced a novel fabrication of aluminum–carbon nanotube (CNT) composites by employing bulk acoustic waves and accumulative roll bonding (ARB). In this method, CNT particles were aligned using ultrasonic standing wave in an aqueous media, and the arrayed particles were precipitated on the aluminum plate substrate. Then, the plates rolled on each other through the ARB process with four passes. Optical and scanning electron micrographs demonstrated the effective aligning of CNTs on the aluminum substrate with a negligible deviation of arrayed CNTs through the ARB process. The X-ray diffraction pattern of the developed composites showed no peaks for carbon and aluminum carbide. In addition, tensile tests showed that the longitudinal strength of the specimens processed with aligned CNTs was significantly greater than that of the specimens with common randomly dispersed particles. The proposed technique is beneficial for the fabrication of Al–CNT composites with directional mechanical strength.  相似文献   

5.
6.
Natural magnetite formed by the isomorphism substitutions of transition metals, including Fe, Ti, Co, etc., was activated by mechanical grinding followed by H2 reduction. The temperature-programmed reduction of hydrogen (H2-TPR) and temperature-programmed surface reaction of carbon dioxide (CO2-TPSR) were carried out to investigate the processes of oxygen loss and CO2 reduction. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS). The results showed that the stability of spinel phases and oxygen-deficient degree significantly increased after natural magnetite was mechanically milled and reduced in H2 atmosphere. Meanwhile, the activity and selectivity of CO2 reduction into carbon were enhanced. The deposited carbon on the activated natural magnetite was confirmed as amorphous. The amount of carbon after CO2 reduction at 300°C for 90 min over the activated natural magnetite was 2.87wt% higher than that over the natural magnetite.  相似文献   

7.
The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery; it can alleviate the environmental pressure caused by slag stocking. The dynamic dielectric parameters of Ti-bearing blast furnace slag/pulverized coal mixture under high-temperature heating are measured by the cylindrical resonant cavity perturbation method. Combining the transient dipole and large π bond delocalization polarization phenomena, the interaction mechanism of the microwave macroscopic non-thermal effect on the titanium carbide synthesis reaction was revealed. The material thickness range during microwave heating was optimized by the joint analysis of penetration depth and reflection loss, which is of great significance to the design of the microwave reactor for the carbothermal reduction of Ti-bearing blast furnace slag.  相似文献   

8.
《矿物冶金与材料学报》2020,27(11):1489-1498
The specific distribution characteristics of inclusions along with the sliver defect were analyzed in detail to explain the formation mechanism of the sliver defect on the automobile exposed panel surface. A quantitative electrolysis method was used to compare and evaluate the three-dimensional morphology, size, composition, quantity, and distribution of inclusions in the defect and non-defect zone of automobile exposed panel. The Al2O3 inclusions were observed to be aggregated or chain-like shape along with the sliver defect of about 3–10 μm. The aggregation sections of the Al2O3 inclusions are distributed discretely along the rolling direction, with a spacing of 3–7 mm, a length of 6–7 mm, and a width of about 3 mm. The inclusion area part is 0.04%–0.16% with an average value of 0.08%, the inclusion number density is 40 mm?2 and the inclusion average spacing is 25.13 μm. The inclusion spacing is approximately 40–160 μm, with an average value of 68.76 μm in chain-like inclusion parts. The average area fraction and number density of inclusions in the non-defect region were reduced to about 0.002% and 1–2 mm?2, respectively, with the inclusion spacing of 400 μm and the size of Al2O3 being 1–3 μm.  相似文献   

9.
The co-oxidation of As(III) and Fe(II) in acidic solutions by pressured oxygen was studied under an oxygen pressure between 0.5 and 2.0 MPa at a temperature of 150°C. It was confirmed that without Fe(II) ions, As(III) ions in the solutions are virtually non-oxidizable by pressured oxygen even at a temperature as high as 200°C and an oxygen pressure up to 2.0 MPa. Fe(II) ions in the solutions did have a catalysis effect on the oxidation of As(III), possibly attributable to the production of such strong oxidants as hydroxyl free radicals (OH·) and Fe(IV) in the oxidation process of Fe(II). The effects of such factors as the initial molar ratio of Fe(II)/As(III), initial pH value of the solution, oxygen pressure, and the addition of radical scavengers on the oxidation efficiencies of As(III) and Fe(II) were studied. It was found that the oxidation of As(III) was limited in the co-oxidation process due to the accumulation of the As(III) oxidation product, As(V), in the solutions.  相似文献   

10.
11.
Ultrasonic vibration assisted tungsten inert gas welding was applied to joining stainless steel 316L and low alloy high strength steel L415. The effect of ultrasonic vibration on the microstructure and mechanical properties of a dissimilar metal welded joint of 316L and L415 was systematically investigated. The microstructures of both heat affected zones of L415 and weld metal were substantially refined, and the clusters of δ ferrite in traditional tungsten inert gas (TIG) weld were changed to a dispersive distribution via the ultrasonic vibration. The ultrasonic vibration promoted the uniform distribution of elements and decreased the micro-segregation tendency in the weld. With the application of ultrasonic vibration, the average tensile strength and elongation of the joint was improved from 613 to 650 MPa and from 16.15% to 31.54%, respectively. The content of Σ3 grain boundaries around the fusion line zone is higher and the distribution is more uniform in the ultrasonic vibration assisted welded joint compared with the traditional one, indicating an excellent weld metal crack resistance.  相似文献   

12.
The potential autoclave was used to study the catalytic mechanism of Cu2+ during the oxygen pressure leaching process of artificial sphalerite. By studying the potential change of the system at different temperatures and the SEM–EDS difference of the leaching residues, it was found that in the temperature range of 363–423 K, the internal Cu2+ formed a CuS deposit on the surface of sphalerite, which hindered the leaching reaction, resulting in a zinc leaching rate of only 51.04%. When the temperature exceeds 463 K, the system potential increases steadily. The increase in temperature leads to the dissolution of the CuS, which is beneficial to the circulation catalysis of Cu2+. At this time, the leaching rate of Zn exceeds 95%. In addition, the leaching kinetics equations at 363–423 and 423–483 K were established. The activation energy of zinc leaching at 363–423 and 423–483 K is 38.66 and 36.25 kJ/mol, respectively, and the leaching process is controlled by surface chemical reactions.  相似文献   

13.
A type of calcium coke was developed for use in the oxy-thermal process of calcium carbide production. The calcium coke was prepared by the co-pyrolysis of coking coal and calcium carbide slag, which is a solid waste generated from the chlor-alkali industry. The characteristics of the calcium cokes under different conditions were analyzed experimentally and theoretically. The results show that the thermal strength of calcium coke increased with the increase in the coking coal proportion, and the waterproof property of calcium coke also increased with increased carbonation time. The calcium coke can increase the contact area of calcium and carbon in the calcium carbide production process. Furthermore, the pore structure of the calcium coke can enhance the diffusion of gas inside the furnace, thus improving the efficiency of the oxy-thermal technology.  相似文献   

14.
《矿物冶金与材料学报》2020,27(11):1471-1481
An improved method of (NH4)2SO4 roasting followed by water leaching to utilize zinc oxidized ores was studied. The operating parameters were obtained by investigating the effects of the molar ratio of (NH4)2SO4 to zinc, roasting temperature, and holding time on zinc extraction. The roasting process followed the chemical reaction control mechanism with the apparent activation energy value of 41.74 kJ·mol?1. The transformation of mineral phases in roasting was identified by X-ray diffraction analysis combined with thermogravimetry–differential thermal analysis curves. The water leaching conditions, including the leaching temperature, leaching time, stirring velocity, and liquid-to-solid ratio, were discussed, and the leaching kinetics was studied. The reaction rate was obtained under outer diffusion without product layer control; the values of the apparent activation energy for two stages were 4.12 and 8.19 kJ·mol?1. The maximum zinc extraction ratio reached 96% while the efficiency of iron extraction was approximately 32% under appropriate conditions. This work offers an effective method for the comprehensive use of zinc oxidized ores.  相似文献   

15.
Cold metal transfer plus pulse (C + P) arc was applied in the additive manufacturing of 4043 Al alloy parts. Parameters in the manufacturing of the parts were investigated. The properties and microstructure of the parts were also characterized. Experimental results showed that welding at a speed of 8 mm/s and a wire feeding speed of 4.0 m/min was suitable to manufacture thin-walled parts, and the reciprocating scanning method could be adopted to manufacture thick-walled parts. The thin-walled parts of the C + P mode had fewer pores than those of the cold metal transfer (CMT) mode. The thin- and thick-walled parts of the C + P mode showed maximum tensile strengths of 172 and 178 MPa, respectively. Hardness decreased at the interface and in the coarse dendrite and increased in the refined grain area.  相似文献   

16.
《矿物冶金与材料学报》2020,27(12):1703-1710
Pyrolysis of the Ta2O5/melamine mixture in molten chlorides is herein demonstrated as a facile and controllable method to nitridize and functionalize Ta2O5. The influence of the stoichiometry and composition of Ta2O5/melamine in molten salts on the nitridation process is rationalized to ensure the controllable preparation of Ta3N5 and Ta3N5/TaON. The characterization results, including scanning electron microscopy, transmission electron microscopy, elemental mapping, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy, all confirm the existence of the Ta3N5/TaON heterojunction, in which the TaON nanoparticles are closely anchored to the Ta3N5 nanorods. Benefiting from its composition and structure, the Ta3N5/TaON composites show enhanced photocatalytic activity for the degradation of methylene blue. The present study highlights that the molten salt method using a solid nitrogen source can be a new technique for rationalizing the design of nitrides and oxynitrides.  相似文献   

17.
To better understand the stress-corrosion behavior of friction stir welding (FSW), the effects of the microstructure on the stress-corrosion behavior of the FSW in a 2198-T34 aluminum alloy were investigated. The experimental results show that the low-angle grain boundary (LABs) of the stir zone (SZ) of FSW is significantly less than that of heated affected zone (HAZ), thermo-mechanically affected zone (TMAZ), and parent materials (PM), but the grain boundary precipitates (GBPs) T1 (Al2CuLi) were less, which has a slight effect on the stress corrosion. The dislocation density in SZ was greater than that in other regions. The residual stress in SZ was +67 MPa, which is greater than that in the TMAZ. The residual stress in the HAZ and PM is ?8 MPa and ?32 MPa, respectively, and both compressive stresses. The corrosion potential in SZ is obviously less than that in other regions. However, micro-cracks were formed in the SZ at low strain rate, which indicates that the grain boundary characters and GBPs have no significant effect on the crack initiation in the stress-corrosion process of the AA2198-T34. Nevertheless, the residual tensile stress has significant effect on the crack initiation during the stress-corrosion process.  相似文献   

18.
The main aim of this study was to investigate liquation cracking in the heat-affected zone (HAZ) of the IN939 superalloy upon tungsten inert gas welding. A solid solution and age-hardenable filler metals were further studied. On the pre-weld heat-treated samples, upon solving the secondary γ′ particles in the matrix, primary γ′ particles in the base metal grew to “ogdoadically diced cubes” of about 2 μm in side lengths. The pre-weld heat treatment reduced the hardness of the base metal to about HV 310. Microstructural studies using optical and field-emission scanning electron microscopy revealed that the IN939 alloy was susceptible to liquation cracking in the HAZ. The constitutional melting of the secondary, eutectic, and Zr-rich phases promoted the liquation cracking in the HAZ. The microstructure of the weld fusion zones showed the presence of fine spheroidal γ′ particles with sizes of about 0.2 μm after the post-weld heat treatment, which increased the hardness of the weld pools to about HV 350 and 380 for the Hastelloy X and IN718 filler metals, respectively. Application of a suitable solid solution filler metal could partially reduce the liquation cracking in the HAZ of IN939 alloy.  相似文献   

19.
《矿物冶金与材料学报》2020,27(9):1165-1178
Voids (referred to as “stopes”) are generally created during underground mining activities and can lead to both local and regional geotechnical instabilities. To assist in managing the stability of mining-related voids and improving the recovery of orebodies, tailing-based backfill technology has been widely used around the world. In the design of tailing-based backfill strategy, the specific function and engineering requirements of the filling are intimately dependent on the stress distribution within the backfilled stope. In this paper, the main mechanics involved in tailing-based backfill in underground mines, which include arching, consolidation, hydration process, and movement of surrounding rocks, are reviewed. Research on the safety of a barricade and stability of an exposed fill face are also presented. In conclusion, the backfilling process should be performed on the basis of a better understanding of the complicated interactions of the mechanisms of filling, consolidation, and hydration process (when cement is added).  相似文献   

20.
The present study aimed to investigate the durability and microstructure evolution of road base materials (RBM) prepared from red mud and flue gas desulfurization fly ash. The durability testing showed that the strength of RBM with the blast furnace slag addition of 1wt%, 3wt% and 5wt% reached 3.81, 4.87, and 5.84 MPa after 5 freezing–thawing (F–T) cycles and reached 5.21, 5.75, and 6.98 MPa after 20 weting–drying (W–D) cycles, respectively. The results also indicated that hydration products were continuously formed even during W–D and F–T exposures, resulting in an increase of the strength and durability of RBM. The observed increase of macropores (>1 μm) after F–T and W–D exposures suggested that the mechanism of RBM deterioration is pore enlargement due to cracks that develop inside their matrix. Moreover, the F–T exposure showed a greater negative effect on the durability of RBM compared to the W–D exposure. The leaching tests showed that sodium and heavy metals were solidified below the minimum requirement, which indicates that these wastes are suitable for use as a natural material replacement in road base construction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号