首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 519 毫秒
1.
文章采用室内实验装置,研究了以棉花为碳源的反硝化墙去除地下水中的硝酸盐.结果表明,以棉花为碳源的反应墙启动快.在室温(26±2)℃,墙内停留时间为7.5 h下,对于进墙NO3--N质量浓度分布在11.26~22.42 mg N/L,氮去除率可以达到95%,且没有明显的NO2--N,进墙NO3--N提高到33.23 mg N/L时,氮去除率依然约在90%,但有NO2--N累积.实验期间NH4 -N产量较少,经过反应墙后pH明显下降.实验表明,棉花反硝化墙是一种价格低廉而有效的去除地下水中硝酸根的方式,棉花在反应过程中也被消耗掉了.  相似文献   

2.
阐述了膜生物反应器在污水回用中的作用;指出生活污水经MBR处理,含碳有机物和氨氮的去除率均大于90%,但对磷的去除率不高,出水中TOC浓度低于1mg,L,而TKN,NH4+--N,NO2--N的质量浓度都低于0.1 mg/L,NO3--N的质量浓度为0.9mg/L;RO可以提高出水水质,可达到饮用水标准,分析了膜污染的原因,提出了减少膜污染的方法.  相似文献   

3.
从污水中分离出菌株DB1去除地下水硝酸盐实验   总被引:2,自引:1,他引:1  
文章通过定时测定培养液中NO3--N、NO2--N和细菌浓度,分别研究了菌株DB1在水和含水层中反硝化的能力;结果表明,该菌株在水中可使NO3--N的去除率达到96.16%,在模拟含水层中能够彻底去除NO3--N,去除率达到100%;NO3--N的去除和NO2--N的积累主要发生在细菌对数生长期,NO2--N的去除主要在稳定期和衰亡期.  相似文献   

4.
污水处理中微生物反硝化脱氮过程及代谢规律   总被引:1,自引:0,他引:1  
微生物同化、异化反硝化均依赖碳源,且同化C/N为23远高于异化C/N。污水系统中反硝化菌多为兼性厌氧菌,其反硝化效果受DO、碳源种类、温度等因素影响较大。DO与NO3--N为竞争关系,DO存在会抑制反硝化,但高DO有利于反硝化菌的生长。不同碳源反硝化所需C/N不同,污水为碳源时所需的C/N约为4.0-5.0,污泥内源呼吸时反硝化C/N最低为2.9-3.2,但其反硝化速率仅为利用VFA时的1/10。常见VFA如甲醇、乙酸等C/N为3.1-4.1。反硝化过程中还应注意温室气体N2O逸出等问题,偏酸性及较高DO会导致反硝化过程N2O积累与逸出。  相似文献   

5.
应用两级上流式厌氧污泥床(UASB)-缺氧/好氧(A/O)-序批式反应器(SBR)深度处理早期和晚期垃圾渗滤液.首先在一级UASB(UASB1)中实现反硝化,在二级UASB(UASB2)中通过产甲烷降解有机物,在A/O反应器的好氧区进行NH4+-N的硝化,最后在SBR中去除残余NH4+-N及通过反硝化去除NO2--N和NO3--N深度脱氮.试验结果表明:早期渗滤液ρ(COD),ρ(TN)和ρ(NH4+-N)分别为14.8,1.8和1.3 mg/mL,最终出水ρ(TN),ρ(NH4+-N),ρ(NO2--N)和P(NO3--N)分别为28,4,3.4和1.9 mg/L,获得了大于98%的TN和NH4+-N去除率.晚期渗滤液ρ(COD)为2.5 mg/mL;ρ(TN),ρ(NH4+-N)分别为3.0和2.9 mg/mL时,获得99%以上的TN和NH4+-N去除率.最终出水ρ(NH4+-N),ρ(NO2--N)和P(NO3--N)都小于10 mg/L,最终出水ρ(TN)为26~32 mg/L.  相似文献   

6.
为解决地下水硝酸盐污染,应用人工神经网络评价生物脱氮工艺硝酸盐的去除效率.采用工艺参数COD、NO3-N、NO2-N、MLSS、DO 等作为输入节点,COD、NO3-N、NO2-N 作为输出节点.神经网络实验结果显示神经网络能够较好地预报出水的水质参数,其预测结果与试验结果符合得较好.  相似文献   

7.
利用氢基质生物膜反应器同步去除多种污染物   总被引:1,自引:0,他引:1  
利用氢基质生物膜反应器(hydrogen-basedmembrane biofilm reactor,MBfR)对含有多种氧化性污染物包括硝酸盐(NO3--N)、硫酸盐(SO24-)、溴酸盐(BrO3-)、六价铬(Cr(Ⅵ))和对氯硝基苯(p-CNB)的模拟地下水进行同步去除试验研究.结果表明,MBfR中生长于中空纤维膜表面的氢自养还原菌利用氢气作为电子供体进行自养还原反应,将水中NO3--N还原成N2,SO24-还原成硫化物(S2-/H2S),BrO3-还原成Br-,Cr(Ⅵ)还原成Cr(Ⅲ),p-CNB逐步还原成对氯苯铵(p-CAN)和苯胺(AN).通过生物还原达到对氧化性污染物的去除或毒性的降低.在氢分压为0.06MPa和水力停留时间为4.67h条件下,经过生物膜驯化及32d的连续运行,反应器对各种氧化性污染物的去除性能达到稳定:NO3--N和BrO3-近于完全去除,SO24-去除率达19.8%,Cr(Ⅵ)去除率达85.8%,p-CNB去除率达86.1%.研究表明,利用氢基质生物膜反应器处理含多种氧化性污染物的地下水可行,且具有一定应用潜力.  相似文献   

8.
地下水中硝酸盐污染源解析是区域地下水污染调查评价的重要内容,也是地下水资源管理的重要依据。以陡河流域为例,采用野外采样测试和室内分析的研究方法,结合地下水中15N同位素技术识别地下水中NO3污染的来源及其贡献比。研究结果表明:地表水中N来源于沿岸化粪系统排泄物,地下水中N来源于动物粪便和化肥的混合;远离河岸带农灌区地下水中硝酸盐主要来源为化肥,贡献比例从50%~72%不等,远离河岸带居民区地下水中硝酸盐主要来源为粪便,贡献比例从42%~80%;河岸带地下水中硝酸盐主要来源于河水入渗,但普遍存在反硝化现象。  相似文献   

9.
好氧颗粒污泥膜生物反应器处理畜禽废水   总被引:2,自引:0,他引:2  
采用好氧颗粒污泥膜生物反应器处理畜禽废水,分别对COD、NH4 -N、NO2--N、NO3--N的去除效果和对膜通量的影响进行了研究。结果表明:在水力停留时间(HRT)为8h,进水COD浓度为600mg/L,NH4 -N浓度为40mg/L的条件下,出水COD、NH4 -N的浓度分别为46.6和4.8mg/L。NO2--N和NO3--N的去除率也可达90%以上。并且好氧颗粒污泥的加入减缓了膜的污染。  相似文献   

10.
利用同步反硝化产甲烷工艺处理垃圾渗滤液,研究了进水CODCr和NO3--N负荷对反应器污染物去除能力的影响,及产甲烷反应的CODCr消耗量与甲烷产量之间的关系。结果表明:随着进水CODCr和NO3--N负荷的提高,反应器运行性能逐渐恶化,但是将CODCr负荷重新降低后,反应器性能又得以恢复,而将NO3--N负荷重新降低后,反应器性能并未得到恢复,说明高水平NO3--N负荷会对微生物的生态平衡造成不可逆破坏;进水NH4+-N浓度达到一定量时,CODCr/NO3--N会影响厌氧氨氧化反应的强度,其临界值为12.5,低于此比值该反应强度增强,反之则减弱;产甲烷反应的CODCr消耗量与甲烷产量之间满足线性关系,其甲烷产率系数为0.25mL/mg。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号