首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Spent selective catalytic reduction (SCR) catalysts are defined as hazardous wastes because of the toxicity of V2O5 to the ecological environment. Recycling of V2O5 and TiO2 from the spent SCR catalysts has strikingly social and environmental benefits as well as economic values. In this work, a “NaOH ​+ ​Na2CO3” system was employed to recycle 99.2% of anatase/rutile TiO2 nanospheres with a nanospherical morphology from the spent SCR catalysts by a simple sintering-leaching process. The observed photocatalytic performance of anatase/rutile TiO2 nanospheres was higher than that of the other TiO2 recovered from the spent SCR catalysts, commercial TiO2, and chemosynthetic TiO2, which can be ascribed to the enhanced separation of photo-excited electron/hole in a direct Z-scheme of anatase/rutile TiO2 homostructures. Additionally, high-purity V2O5 microrods with high H2S removal performance were efficiently prepared by a hydrothermal method in the leaching solution, which is superior to the traditional method including NH4VO3 precipitation and solvent extraction as the present method can recycle vanadate from low-grade filtrate with a 99.6% of recovery rate. This study develops an alternative method for controlling pollution of vanadate to soil and water and recycling of valuable metals.  相似文献   

2.
On the basis of the FLP (frustrated Lewis pair) principle, a new strategy has been proposed to construct the “frustration” in designing metal-free hydrogen activation compounds, by using FMO (frontier molecular orbital) analyses and quantum mechanics calculations. Unlike the known FLPs which use bulky substituents to prevent them from forming stable Lewis acid/base complexes, the new approach encumbers the intramolecular π donation from the electron donor to the acceptor (e.g. in BH2NH2) by using a CH2 bridge (giving BH2CH2NH2). The strategy is simple and effective. Its effectiveness is demonstrated by the small hydrogen activation energy (12.0 kcal/mol) of the model molecule (BH2CH2NH2), which is significantly less than the 42.7 kcal/mol of BH2NH2 and also less than the 18.5 kcal/mol of BH2PH2 whose derivative, R2PB(C6F5)2, has been experimentally shown to be able to activate hydrogen. We also exemplified how to use the strategy to design experimentally more realizable molecules. The example shows promises as a hydrogen activation agent. The strategy can be used to design metal-free catalysts for direct hydrogenation.  相似文献   

3.
Hierarchical Cu20/Au/CuO nanostructures have been achieved by water-based green fabrication at a low temperature. Precluding the requirement of the tem- plate removal, the generation of hierarchical architecture relied on the catalytic activity of gold nanoparticles attached on the Cu20 nanocubes. Notably, we creatively developed the dual-roles catalytic ability of gold, which not only remarkably increased the specific surface area of this architecture, but also provided the enhanced performance for gas sensing.  相似文献   

4.
Nickel was supported on varied ratios of ceria-titania mixed oxides(Ni/Ce_xTi_yO_2) to evaluate the role the support plays in photothermal carbon dioxide hydrogenation to produce methane. In a batch photothermal reactor system, Ni/CeO_2 achieved the highest conversion rate, reaching a conversion of 93% in approximately60–90 min. To decouple the influence of light and heat, the CO_2 hydrogenation was examined in an in-house designed photothermal reactor, whereby heat can be applied externally. Decoupling experiments revealed that heat from the thermalisation by light was the main driving force for the reaction. In addition, the conversion and temperature profile of the different catalysts revealed that the catalyst performance was governed by catalyst reducibility. H_2-TPR analyses showed that the Ni became more readily reducible with increasing Ce O_2 content,suggesting that the oxide plays a role in activating the Ni. The reduction temperature of the nickel catalyst(following a reduction and passivation process) was below 200 °C, which meant that the inherent heating temperature of the photothermal reactor was sufficient to initiate Ni/CexTiyO_2 catalyst activity. The exothermic methanation reaction was then able to heat the system further, ultimately reaching a temperature of 285 °C. The ancillary rise in temperature promotes further nickel reduction and methane formation, leading to a "snow-ball"effect. The findings demonstrate that, to achieve a "snow-ball" effect in a photothermal system, designing a catalyst which is easy to reduce, active for CO_2 hydrogenation, and capable of converting light to heat for its initial activation is critical.  相似文献   

5.
以经过酸化刻蚀改性的粉煤灰漂珠(FACs)为催化剂载体制备Ag_2O/FACs复合材料。借助SEM、XRD、FTIR、BET等对相关样品的物相结构及微观形貌进行表征,并通过亚甲基蓝(MB)溶液的光降解实验评价了所制复合材料的光催化性能。结果表明,尽管FACs改性前后的结构及化学组成差别不大,但酸化刻蚀处理能有效提高FACs的吸附性能;Ag_2O/FACs复合材料在近红外光条件下对亚甲基蓝溶液的降解率可达97.5%,并具有较高的催化稳定性;Ag_2O光生空穴在降解反应中起到重要作用。  相似文献   

6.
A versatile hydrothermal strategy for the growth of a centimeter-sized CaO/amorphous carbon rope was introduced in this article. It is demonstrated that the centimeter-sized rope is composed of abundant amorphous carbon “belt” and “stick” with small polygonal CaO particles in the size of 3.0–5.0 nm embedded in the “belt” and “stick” framework. With the increase in NaOH amount, polygonal Ca(OH)2 particles in the size of 0.5–3.0 μm are found, instead of the CaO/amorphous carbon rope. This morphology evolution results from the competition of structure-directing and hydrothermal-carbonizing of organic agents during hydrothermal reaction. These results may give good suggestions for the controllable growth of newly unique morphological micro/nano architectures in solution phase reactions.  相似文献   

7.
Supercapacitors are attracting huge research interest because they are expected to achieve battery-level energy density, and they have a longer calendar life and shorter charging time. However, due to the out shell materials without contact extra freeway for charge transports, the out shell materials have still limited contribution to high capacitance for array structure at high rates. Here, CO/CO@Ni-CMO NBs were designed and synthesized on Cu foam substrates with CuO NBs as cores or extra freeway and Ni–CoMoO4·0.75H2O nanobelt as shell by an easily synthetic method. CuO NBs will provide electron “superhighways” and extra outside freeway for charge storage and delivery. Besides, the Ni doped CoMoO4·0.75H2O NBs are conducive to the electrical conductivity, and open space among these nanosheets can act as an “ion reservoir”, the increment of active sites and the contribution of capacitive effects. Finally, the CO@Ni-CMO NBs directly grown on Cu foam could avoid the “dead” volume caused by the tedious process of mixing active materials with polymer binders/conductive additives. As expected, the CO/CO@Ni-CMO NBs exhibited the high specific capacitance, the good rate performance and the excellent electrochemical stability.  相似文献   

8.
电催化还原CO2能够将CO2转换成高附加值的化学品或燃料,该工艺是一种缓解能源危机和全球变暖的理想途径。但由于缺乏性能优异、价格低廉、环境友好的催化剂,该途径的实用化仍具挑战性。碳基催化剂因具有资源丰富、导电性好、比表面积大、环境友好等优点而被广泛应用于多种催化反应中。目前报道的系列碳基催化剂在CO2还原反应中也展现出极好的催化性能和应用潜力。综述了N原子掺杂、构造缺陷、单原子负载和金属纳米颗粒负载等手段对碳基材料电催化还原CO2性能的影响及其催化机制,并总结了电催化还原CO2所面临的挑战。同时对未来碳基电催化剂的合成及发展进行了展望。  相似文献   

9.
The adsorption and dissociation of NH3 on Ir{110}(1×2) have been investigated using the density- functional calculations at a coverage of 0.25 ML. The adsorption sites, energy, and geometries were obtained for NH3, NH2, and H adsorptions on the surface. The transition state for NH3 dissociation on Ir{110}(1×2) was also identified. It was found that NH3 is adsorbed preferentially at the ridge atop site, while NH2 and H are adsorbed at the ridge bridge site. The activation barrier of NH3 dissociation is 78.4 kJ/mol, which is very close to the NH3 adsorption energy of 90.0 kJ/mol. This indicates that the desorption and dissociation of NH3 on Ir{110}(1×2) are very competitive, which is consistent with the recent experimental results.  相似文献   

10.
Reactive ion etching was used to etch barium strontium titanate thin films in a CHF3/Ar plasma.BST surfaces before and after etching were analyzed by X-ray photoelectron spectroscopy to investigate the reaction ion etching mechanism,and chemical reactions had occurred between the F plasma and the Ba,Sr and Ti metal species.Fluorides of these metals were formed and remained on the surface during the etching process.Ti was almost completely removed because the TiF4 by-product is volatile.Minor quantities of Ti?F could still be detected by narrow scan X-ray photoelectron spectra,and Ti?F was thought to be present in the form of a metal-oxy-fluoride.These species were investigated from O1s spectra,and a fluoride-rich surface was formed during etching.BaF2 and SrF2 residues were difficult to remove because of their high boiling point.The etching rate was limited to 12.86 nm/min.C?F polymers were not found on the surface,indicating that the removal of BaF2 and SrF2 was important for further etching.A 1-min Ar/15 plasma physical sputtering was carried out for every 4 min of surface etching,which effectively removed remaining surface residue.Sequential chemical reaction and sputtered etching is an effective etching method for barium strontium titanate films.  相似文献   

11.
0.14 at% Mn-doped 0.95(Na1/2Bi1/2)TiO3-0.05BaTiO3 (0.95NBT-0.05BT) lead-free single crystals were grown by a top-seeded solution growth method (TSSG). X-ray powder diffraction measurement showed that the as-grown single crystals exhibit rhombohedral perovskite structure with apparent distortion. With the increase of temperature, successive structural phase transitions occur in the Mn-doped 0.95NBT-0.05BT single crystals. After poling, apparent dielectric anomaly is induced accompanied by the increase of the character of diffuse phase transition and the decrease of the value of dielectric constant. The Mn-doped 0.95NBT-0.05BT single crystals exhibit complex domain structure, in which micro and macro domains coexist with statistically 4 mm symmetry. The Mn-doped 0.95NBT-0.05BT lead-free single crystals exhibit excellent piezoelectric and pyroelectric properties, which will lead to promising advance in piezoelectric and pyroelectric applications. The infrared-absorption band occurred around 630.6 cm?1 can be assigned to the “stretching” normal vibration of [Na1/2Bi1/2]/Ti-O group. The three diffused Raman bands centered around 300, 560 and 800 cm?1 can be attributed to F2g [TiO6] bending vibration, A1g [TiO6] stretching vibration and “soft mode” mixed by bending and stretching vibrations.  相似文献   

12.
Surface NH2 -functionalized SBA-15 mesoporous silica was synthesized using toluene diisocyanate (TDI) as a bridge molecule. First, the surface Si-OH groups of SBA-15 were reacted with the -NCO groups of TDI. Then, the remaining unreacted -NCO groups of TDI were reacted with the -NH2 groups of ethylenediamine (EDA). Finally, the NH2 -groups were successfully grafted onto the mesoporous SBA-15 surface by the above two-step method. XRD, N2 adsorption-desorption analysis, FT-IR, and 29 Si MAS NMR were used to identify the well-ordered structure and the successful incorporation of the -NH2 groups onto the surface of the synthesized materials. Characterizations revealed that such -NH2 grafting is an effective method to obtain a high loading of -NH2 groups onto the SBA-15. When subjected to toxic heavy metal ions in aqueous solution, the obtained NH 2 -functionalized SBA-15 showed very high adsorption rates 99.9%, 99.7%, 99.8%, 99.5% and 99.9% for Pb2+ , Cr3+ , Cd2+ , Ag+ and the Cu2+ , respectively, which is attributed to the strong complexation reactions between the metal ions and the grafted -NH2 groups.  相似文献   

13.
WO3–CeO2–TiO2 catalysts for NO (nitrogen monoxide) reduction by ammonia were prepared by a sol–gel method. The catalysts were characterized by BET, XRD, Raman, NH3/NO adsorption and H2-TPR to investigate the relationships among the catalyst composition, structure, redox property, acidity and deNOx activity. WO3–CeO2–TiO2 catalysts show a high activity in a broad temperature range of 200–480 1C. The low-temperature activity of catalysts is sensitive to the catalyst composition especially under low-O2-content atmospheres. It may be related to the synergistic effect between CeOx and WOx in the catalysts. On one hand, the interaction between ceria and tungsten oxide promotes the activation of gaseous oxygen to compensate the lattice oxygen consumed in NH3-SCR (selective catalytic reduction) reaction at low temperatures. Meanwhile, the Br?nsted acid sites mainly arise from tungsten oxides, Lewis acid sites mainly arise from ceria. Both of the Br?nsted and Lewis acid sites facilitate the adsorption of NH3 on catalysts and improve the stability of the adsorbed ammonia species, which are beneficial to the NH3-SCR reaction.  相似文献   

14.
In order to investigate the catalytic performance of anodic TiO2 nanotubes and their practical application in the treatment of refractory microcystins(MCs) in natural-water samples,TiO2 nanotubes of diameter of 50-80 nm were fabricated by anodization in C2H2O4·2H2O containing NH4F.Under irradiation with natural sunlight,MC-LR was totally degraded after 1 d using the anodic TiO2 nanotubes.In contrast,the removal efficiency without TiO2 nanotubes was as low as 47.7% within 20 d.In addition,a mixture of anatase and rutile TiO2 gave higher photocatalytic activity than the single phase did.The pH also influenced the adsorption capacity of the TiO2 nanotubes.The order of MC-LR degradation efficiencies at different pH values was 3.5 > 8.0 > 10.0.After five repeated experiments on the degradation of MC-LR for 7 h,the degradation efficiency was still stable.  相似文献   

15.
用不同浓度氢氧化钠溶液对硅铝比为200的商业HZSM-5分子筛进行了扩孔改性,利用粉末X射线衍射、扫描电镜、NH3程序升温脱附和N2吸脱附对改性分子筛的晶体结构、孔结构、形貌和酸性进行了表征,考察了改性HZSM-5分子筛在催化裂解废轮胎反应中的性能.结果表明,通过改变氢氧化钠溶液的浓度,可以一定程度调控分子筛晶体的孔结构和酸量.随着碱浓度增大,改性HZSM-5分子筛平均孔径增大,而介孔孔容和酸量先增加后减少.经0.4 mol/L氢氧化钠溶液改性处理后的HZSM-5分子筛催化剂,介孔孔容及酸量最大,其催化裂解废轮胎低碳烯烃选择性最高,达到了32.39%,远高于商业HZSM-5分子筛.   相似文献   

16.
通过分析基于内容的链接选择Best-First算法,引入能够体现链接价值的HITS(hyperlink induced topic search)算法,提出了新的链接选择策略.将两种算法相结合,新的爬虫不仅仅考虑页面内容,同时将链接结构加入进来,使得在下载的过程中能够保证主题相关性和权威性,缓解爬虫在爬行阶段的“近视”现象.结果表明:新的爬行策略比单一的Best-First算法具有更好的性能表现.  相似文献   

17.
以六亚甲基亚胺为模板剂,通过动态水热晶化法合成硅铝摩尔比为20~60的分子筛,采用XRD表征其物相结构;并采用NH3-TPD,吡啶吸附等方法表征其酸性质;利用气-液固反应和液-固反应,比较不同硅铝摩尔比的MCM-22分子筛在苯与丙烯烷基化反应的催化性能。结果表明:当硅铝摩尔比在30~60时,可以合成出比较纯的MCM-22分子筛,且随着硅铝摩尔比的增加,分子筛的B酸量逐渐增加,所表现出的烷基化活性也随之增加。当硅铝摩尔比为40时,目标产物异丙苯的选择性达最高值,副产物二异丙苯和三异丙苯的摩尔分数最低,但正丙苯的摩尔分数却最高,这与催化剂中B酸量及其所占比例有关。  相似文献   

18.
为降低冲突驱动子句学习SAT求解器的运行计算成本,从“何时重启”和“何处重启”两个角度入手,提出一种动态启发式重启策略2WSAT.该策略将冲突决策层次和变量重启次数作为反映求解状态的重要参数,及时摆脱错误的求解分支,通过重启后选择更优的决策变量提高求解性能.采用实际应用的基准测试集,与两个流行的求解器进行了对比实验.结果表明,所提出的策略对求解速度、内存占用、冲突发生数、传播次数等关键指标有显著改善.  相似文献   

19.
A series of CrOx-CeO2/Ti-PILC (PILC is pillared interlayered clay) catalysts for n-butylamine oxidation were prepared using an impregnation method, and the structures, surface acidity distributions, and redox properties of the catalysts were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, H2 temperature-programmed reduction, and NH3 temperature-programmed desorption. The results show that addition of an appropriate amount of CeO2 enhances the interactions between Cr and Ce, and this increases the acid strength and mobility of active oxygen species on the cata- lyst. 8CrCe(6:1)/Ti-PILC(12,20) exhibits the best catalytic performance and control of NOx in n-butylamine oxidation.  相似文献   

20.
以松木为模板,采用模板法将不同含量的Al2O3添加到WO3/ZrO2复合氧化物中,采用X射线衍射、BET比表面积分析、拉曼光谱和NH3等温吸附测试等手段对其进行表征,以评估其改进结果。将Al2O3/WO3/ZrO2催化剂应用到甲醇与乌桕油(非食用油)的酯交换反应中,在其他反应条件相同,Al2O3质量分数为3%时,生物柴油最高产率达到83.1%。结果表明:添加Al2O3稳定了ZrO2的四方相结构,使得催化剂比表面积更大、孔数量增加;模板法制备的催化剂孔径分布均匀,WO3呈高度分散无定型状态;引入Al2O3增加了WO3/ZrO2催化剂的中强酸性,对弱酸性和强酸性无明显改变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号