首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以离子液体修饰碳糊电极(CILE)为工作电极,利用直接滴涂法将氮掺杂石墨烯(NG)固定于CILE表面后,利用恒电位法将纳米金(AuNPs)沉积在电极表面,再通过自组装法将适配体(aptamer)固定在AuNPs/NG/CILE表面制得一种新型电化学适配体传感器(aptamer/AuNPs/NG/CILE)。利用示差脉冲伏安法(DPV)对修饰电极进行表征,建立了汞离子(Hg~(2+))的电化学适配体检测方法,线性范围为1.0×10~(-9)~3.0×10~(-7)mol/L,检测限为3.33×10~(-10)mol/L。  相似文献   

2.
纳米铂粒子(PtNPs)具有良好的生物相容性及高的催化性能,利用恒电位法将DNA生物分子电沉积在PtNPs修饰电极表面,得到一纳米结构的导电薄膜,极大地增大了电极的比表面积,结合Nafion的高选择性,制备了一种新型的Nafion/DNA/PtNPs复合膜修饰电极,研究了多巴胺(DA)在该修饰电极上的电化学行为,利用示差脉冲伏安法(DPV)对DA进行了定量分析.结果证明,该复合膜修饰电极大大提高了DA的电化学响应,在0.1 mol/L pH 7.0磷酸盐缓冲溶液(PBS)中,DA的示差脉冲伏安峰电流与其浓度在0.01~0.1μmol/L和0.1~6.0μmol/L两个范围内呈良好的线性关系,检出限可达3.3 nmol/L.此外,该修饰电极可以经受较高浓度抗坏血酸(AA)和尿酸(UA)的干扰,用于盐酸多巴胺注射液中DA含量的测定,结果满意.  相似文献   

3.
利用石墨炔(GDY)制备了一种修饰电极.采用离子液体N-己基吡啶六氟磷酸盐(HPPF6)修饰碳糊电极(CILE)作为基底电极,通过滴涂法将GDY材料修饰于CILE表面得到修饰电极GDY/CILE.通过扫描电子显微镜和透射电子显微镜观察了GDY的形貌并采用循环伏安法和电化学交流阻抗法对该修饰电极进行电化学测试,结果表明制备的修饰电极有较大的有效面积、较高电子传输速率以及较低的电子界面转移电阻.对修饰电极进行了连续扫描和平行测试,该工作电极表现出良好的稳定性和重现性.  相似文献   

4.
以离子液体修饰碳糊电极(CILE)作为基底电极,将纳米钯-石墨烯(Pd-GR)复合材料和辣根过氧化物酶(HRP)分层涂布在电极上后用Nafion膜固定,制备了修饰电极(Nafion/HRP/PdGR/CILE).光谱法证明HRP在膜中结构没有发生变化.循环伏安扫描出现一对峰形良好的电化学氧化还原峰,表明HRP与电极之间的直接电子转移得以实现,Pd-GR复合材料的高导电性有利于加快电子传递速率.该HRP修饰电极对三氯乙酸的电催化还原有较好的效果.  相似文献   

5.
采用静电纺丝法和高温碳化法制备了碳纤维材料,进一步用水热合成法制备碳纤维-纳米金复合材料.将优化浓度的碳纤维-纳米金复合材料作为修饰剂固定于碳离子液体电极(CILE)的表面制得了碳纤维-纳米金修饰电极(CNF-Au/CILE),采用扫描电子显微镜考察了复合材料的表面形貌.最优实验条件下将该修饰电极用于ATP的检测,结果发现ATP浓度为0.06~0.80 mmol/L和12.0~150.0 mmol/L时,氧化峰电流值与浓度呈现出良好的线性关系,检测限为0.023 mmol/L.常见干扰物质对ATP的测定影响较小,说明该方法具有良好的选择性,并成功应用于三磷酸腺苷二钠注射液中ATP含量的测定.  相似文献   

6.
利用高分子聚合物壳聚糖链上富含的氨基修饰石墨烯,制备了具有独特性质的石墨烯基纳米复合材料,并利用壳聚糖对金纳米粒子良好的保护作用,使金纳米粒子固载到石墨烯纳米复合材料的表面,合成了一种具有生物相容性的金纳米粒子/氧化石墨烯纳米复合材料.同时,利用UV-vis、FT-IR、Zeta电位仪、XRD粉末衍射仪、TEM等对所制备石墨烯基纳米复合材料进行了表征.结果表明,PEI/GO/GC,AuNPs/PEI/GO/GC修饰电极对H2O2具有更好的电化学催化性能.  相似文献   

7.
利用氯磺酸法,以芘为原料制备巯基芘(PyMT),通过平面分子大π键间的共轭作用与石墨烯(RGO)形成复合材料(PyMT-RGO),进而通过PyMT的巯基将复合材料自组装到金电极上,制得PyMT-RGO/Au修饰电极,实现石墨烯以直立形态固定在电极表面.并利用恒电位电沉积法在RGO表面沉积纳米金(AuNPs)得到非酶葡萄糖传感器(AuNPs/PyMT-RGO/Au).利用AuNPs/PyMT-RGO/Au对葡萄糖进行检测,线性范围为1~100mmol/L,相关系数为0.991,检出限为0.57mmol/L.此传感器的在检测电位下对AA、UA具有理想的抗干扰能力,且有较好的一致性和重现性,在实际应用中具有潜在价值.  相似文献   

8.
甲醇电化学氧化机理的研究对制备与直接应用于甲醇燃料电池具有重要意义.利用电沉积法制备纳米Pt修饰玻碳电极,以此作为工作电极,基于现场红外光谱技术、循环伏吸法(CVA)、导数循环伏吸法(DCVA)与循环伏安法(CV),研究碱性条件下甲醇的电氧化行为.结果表明与Pt电极相比,纳米Pt修饰电极能更有效地催化甲醇电化学氧化,生成CO_2.进一步研究发现,纳米Pt修饰电极对甲醇氧化转化为甲酸这一过程具有更高的催化活性.  相似文献   

9.
通过将金纳米粒子(AuNPs)电沉积在Fe3O4@MoS2修饰的电极上制备了一种新型的电化学传感器,该修饰材料是以二硫化钼(MoS2)为基底,采用一锅法将四氧化三铁微粒(Fe3O4 NPs)负载在MoS2上。Fe3O4@MoS2纳米复合材料独特的化学结构和较高的比表面积能有效促进AuNPs的后续吸附,有效增强检测多巴胺的灵敏度。AuNPs与Fe3O4@MoS2纳米复合材料之间的协同作用还弥补了MoS2电导率的不足,提高了传感器的灵敏度和稳定性。本文成功开发了一种灵敏度高,选择性好的多巴胺(DA)检测方法,能够准确检测DA的有效线性范围为15μmol/L~750μmol/L,检出限为8μmol/L (S/N=3)。运用循环伏安法(CV)和差分脉冲伏安法(DPV)实现了对人体血清样品中多...  相似文献   

10.
以石墨烯、对氨基苯甲酸重氮盐和氯金酸为原料,制备了一种具有独特性质的金纳米粒子/石墨烯复合材料,利用红外光谱和紫外可见光谱表征了其光学性质,利用TEM表征了其结构性质.将葡萄糖氧化酶吸附到金纳米粒子/石墨烯复合材料表面,制得了一种葡萄糖氧化酶修饰电极,利用循环伏安法检测了所获得的修饰电极的电化学性质,并研究了其对葡萄糖的电化学催化性能.结果表明,葡萄糖浓度(x)与响应电流(y)呈线性关系,y=5.223x-2.652,R=0.976,线性范围为1.4~6.2μmol/L,检出限为0.2μmol/L(RS/N=3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号