首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
稠油热裂解改质行为   总被引:2,自引:0,他引:2  
为探讨稠油火烧驱油降黏机制,对乐安油田草南稠油在火驱过程中的热裂解改质行为进行试验研究.在380 ℃条件下,分析稠油在水蒸气、CO2和N2介质中高温热裂解产物及其组成,讨论不同体系的高温反应机制.试验结果表明:高温下稠油中的胶质、沥青质发生热裂解反应,分子链断裂后生成饱和烃和芳烃,产生气相、油相和焦沥青;CO2、水蒸气和N2中稠油热裂解气相产物和焦沥青产量明显降低,油相产物增加;水蒸气介质中,稠油热裂解主要是水热裂解反应,在CO2和N2环境下高温裂解为催化热裂解.  相似文献   

2.
对于两种不同相对分子质量的含氯对位芳香族聚酰胺(Cl-PPTA)薄膜样品和聚对苯二甲酰对苯二胺(PPTA)粉末样品,采用热失重-傅里叶变换红外光谱(TG-FTIR)和裂解色谱-质谱(Py-GC/MS)分析其热分解过程.由TG分析得到了样品在空气和氮气气氛下的特征性温度,表明在有氧情况下Cl-PPTA的热稳定性比PPTA好,而且在氮气气氛下高温残留率比PPTA高.在空气气氛下,ClPPTA热分解的主要产物为HCN、CO、CO2、NO2和H2O,且CO2吸收峰最强;将Cl-PPTA薄膜在氮气气氛下进行高温处理,对得到的产物进行IR分析,显示羰基吸收峰逐渐减弱且出现新末端基团或官能团;而高温下Py-GC/MS的结果表明CO2和苯环是Cl-PPTA主要的裂解产物;随着裂解温度的改变,Cl-PPTA气相色谱和质谱发生很大变化,这些裂解产物可以帮助分析Cl-PPTA薄膜的裂解机理.  相似文献   

3.
稠油低温氧化过程结焦行为实验   总被引:1,自引:1,他引:0  
采用热重(TGA)、差热(DSC)和高温高压反应釜实验,研究稠油在空气和氮气介质中热转化过程及其反应产物,分析稠油油藏注空气过程中低温氧化对稠油结焦反应的影响,考察稠油在不同反应条件下的临界结焦温度。实验结果表明:随着温度升高,稠油在空气介质中的热转化过程经历低温氧化、沉积结焦和高温氧化3个阶段;低温氧化使稠油的临界结焦温度降低,稠油在氮气介质中的临界结焦温度约为400℃,而在空气中经历低温氧化后其临界结焦温度降低至280℃。结合稠油结焦机制分析认为其临界结焦温度降低与低温氧化存在显著热效应及组分变化有关,低温氧化过程导致稠油上述变化降低其胶体结构稳定性,引起相分离,加速沥青质物理聚沉,发生化学共聚生焦。  相似文献   

4.
熔融盐具有良好的热化学稳定性、较大的导热系数及较低的熔点,是一种非常有前景的裂解反应介质和催化剂。采用三元碱金属碳酸盐(Li_2CO_3-Na_2CO_3-K_2CO_3)体系,探究熔融盐催化甲苯裂解及水蒸气重整的反应规律,并对其产物进行分析。结果表明:甲苯高温裂解产生了H_2、CH_4、部分液相多环芳烃和积碳,且随着反应温度升高,甲苯转化率提高;熔融盐促进了甲苯甲基上的C—H键断裂,增加了气体和多环芳烃的产量,与无熔融盐热裂解相比甲苯转化率明显提高;水蒸气的引入改变了甲苯的热转化路径及产气组成,增加了小分子气体H_2、CO、CO_2的产量,减少了PAHs的生成,且可使积碳量明显降低;在熔融盐条件下,甲苯与水蒸气反应积碳量较无熔融盐中显著降低,气体产量则明显增加。  相似文献   

5.
通过室内单管模型进行了热水、饱和蒸汽、过热蒸汽驱油实验以及高温高压反应釜的水热裂解实验,研究了在相同温度条件下,热水、饱和蒸汽、过热蒸汽三种情况下,对提高敏感性储层驱油效率的影响。根据过热蒸汽的特性,着重分析了过热蒸汽是如何提高敏感性油藏原油采收率的,包括过热蒸汽与稠油在高温环境发生的水热裂解反应,对沥青质的转化率的影响,增大油相渗流通道,对油-水界面张力的降低,过热带的油相渗透率的增加,以及对储层水敏性的抑制。  相似文献   

6.
几种医疗垃圾高温水蒸汽气化模拟研究   总被引:1,自引:1,他引:0  
针对乳胶手套、棉花和输液器三种典型有机医疗废物,以高温水蒸气作为气化剂;基于吉布斯自由能最小化原理,对三种医疗废物高温水蒸气气化的热力学问题进行模拟研究。探讨原料种类、气化温度和水蒸气通入量等影响因素,对合成气组分、产气量和产气低位热值等评价指标的影响规律。模拟结果表明:在同一工况下,原料中的氢、氧含量决定合成气中的氢气与碳氧化物的产量;反应温度与水蒸气-医疗垃圾质量比(S/W)可改变合成气各产气组分及低位热值,得出最佳反应温度为800℃、S/W为2.0。  相似文献   

7.
特超稠油水热裂解降粘反应研究   总被引:1,自引:1,他引:0  
针对特超稠油开采难的问题,进行了无水及有水条件下超稠油的裂解实验,通过族组分、气相色谱仪及红外光谱仪对水热裂解反应前后稠油裂解降黏规律进行了研究。结果表明,超稠油经过无水参与的裂解反应后,胶质含量减少,沥青质的含量大幅上升,芳烃的含量大幅下降,饱和烃含量略有增加。超稠油经过有水参与的裂解反应后,沥青质及胶质的含量降低,饱和烃与芳烃的含量增加。无水存在的情况下,超稠油在高温的条件下发生了裂解及聚合反应,且以生成沥青质的聚合反应为主,主要由芳烃及胶质聚合转化生成沥青质,稠油黏度增加。高温水参与了稠油水热裂解反应后,其中的聚合反应得到了抑制,促进了裂解反应的进行,使稠油的重质组分向轻质组分转化,稠油黏度降低。  相似文献   

8.
研究在流动氮气和埋炭条件下铝热还原氮化TiO2的反应过程,借助于X射线衍射(XRD)和扫描电子显微镜(SEM)分别测试和观察两种气氛中不同温度下处理后产物的物相组成和显微结构。结果显示,与流动氮气氛下一样,在埋炭气氛下采用铝热还原氮化法可以制备氮化钛复相材料,但处理气氛明显影响着铝热反应的程度及产物的形貌,在埋炭条件下处理后的产物中氮化钛含量、晶粒大小、晶格常数明显低于流动氮气氛下处理产物中上述各项值;热力学计算发现埋炭条件下铝除参与铝热还原反应外,还与炭粉床中氧发生反应,使参与铝热反应的金属铝不足,造成产物中有剩余的金红石存在。  相似文献   

9.
采用热重分析仪研究了云南玉溪煤和新疆准东煤的加氢热解煤焦二氧化碳气化反应性,考察了成焦压力、停留时间及气氛对煤焦气化反应性的影响,并利用均相模型计算了各煤焦的非等温气化动力学参数。采用实验室固定床反应器,研究了上述两种煤加氢热解煤焦的水蒸气气化特性,考察了成焦气氛对煤焦气化速率和气体产物组成的影响。热重气化实验表明,准东煤焦的气化反应性明显好于玉溪煤焦,前者的反应活化能远小于后者的反应活化能;无论哪种煤,加氢热解煤焦的气化反应性随加氢过程碳转化率的增大呈下降趋势;在相近的碳转化率下,加氢热解煤焦的气化反应性明显好于氮气气氛热解所得煤焦。在水蒸气气化的情况下,准东煤焦的气化反应性同样好于玉溪煤焦。总体上准东加氢热解煤焦的产氢率相比氮气气氛热解所得煤焦有所增加,不过对于这两种煤焦,随着气化温度提高,H2与CO的物质的量之比均逐渐接近于热力学平衡所得的计算值。  相似文献   

10.
利用微乳液法合成纳米镍催化剂,采用透射电镜对其进行表征,在200℃时对超稠油进行水热裂解催化反应,通过气相色谱仪、元素分析仪、相对分子质量测定仪、红外光谱仪对反应前后稠油的物化性质进行分析。结果表明:水热裂解催化反应后,超稠油降黏率达90.36%,稠油胶质与沥青质含量减少,稠油相对分子质量下降,沥青质相对分子质量降低幅度最大;反应后稠油及其重质组分的氢碳原子数比增加,硫与氮含量减少,氧含量增加;稠油发生水热裂解反应的同时,存在沥青质的聚合反应,沥青质的裂解在降黏反应中起到了关键的作用;纳米镍催化剂促进了水热裂解反应,同时抑制了聚合反应;纳米镍催化剂协同作用使高温水与稠油发生反应,产生具有表面活性的醇类、酚类、羧酸类等物质,导致反应后稠油含氧量增加,黏度降低。  相似文献   

11.
通过在不同的实验体系(常压和20 MPa)进行的原油裂解成气模拟实验,对原油裂解成气过程和裂解气产率进行研究。结果表明:低速率长时升温相对高速率短时升温对原油裂解成气更有利;压力对原油裂解有抑制或延迟作用,压力条件下原油初始裂解时间滞后,原油裂解温度门限较高;压力可能抑制了重烃气C2-5向甲烷的二次裂解,20MPa下在高温阶(600~650℃)较常压有显著高的C2-5产率和低的干燥系数;加压环境下水参与了原油裂解反应,加压水体环境下原油转化率降低而总产气率、重烃气C2-5产率和二氧化碳产率升高;二氧化碳和重烃气C2-5质量产率变化规律和形成机制比较接近;总裂解气主生气期在425~650℃,对应Ro约为1.5%~2.4%。  相似文献   

12.
加热裂解Lyocell纤维,采用气相色谱质谱联用仪研究裂解过程.750℃时,鉴定了其中59种裂解产物,主要的裂解产物为二氧化碳、醛、酮、酸和酯类、呋喃类杂环化合物和糖类化合物等.1,6-脱水-β-D-吡喃葡萄糖(左旋葡聚糖)是Lyocell纤维的重要裂解产物.Lyocell纤维裂解过程中,发生侧基消去水反应,转糖苷作用引起链剪切作用,逆醛醇缩合反应的链剪切作用.经过分子重排,次级反应等形成了各种裂解产物.  相似文献   

13.
在30 MPa压力下对塔里木原油四组分进行封闭体系的热解实验,通过气相色谱(GC)和气相色谱/质谱(GC/MS)分别对原油四组分热解反应的气体产物及饱和分热解过程的液态产物进行分析.结果表明:原油四组分热解气体产物中C1组分产率明显高于C2~C5组分,气体产物中C1~C2组分的产率及气体总产率随热解温度升高而增加;在温度高于450℃时,四组分总产气率的大小顺序为:沥青质饱和分芳香分胶质.随热解温度升高,饱和分中的主要组分C12~C18的反应程度加剧.在410℃时,饱和分热解以裂解反应为主,在大于490℃时,裂解和缩合反应程度都在增加,导致气相产物的产率提高及液相产物中主要组分向大分子烃类转移;且温度升高,液态产物分布的离散程度增加.  相似文献   

14.
裂解汽油在ZSM-5沸石上的芳构化   总被引:1,自引:0,他引:1  
采用连续流动反应装置,考察了裂解汽油在HZSM-5与金属元素改性的HZSM-5上的芳构化反应,发现锌改性后提高了液体产物中芳烃的收率。为了克服裂解汽油中含硫含焦杂质的影响,提出了获取芳烃的有效工艺:蒸馏除焦-加氢预脱硫-氢气氛下芳构化反应-冷凝产物。用氨吸附的程序升温脱附法,将催化剂的酸性质与其催化芳构化作用进行关联,认为Zn改性后的HZSM-5催化剂具有较温和的酸中心,可能是其芳构化高活性与高选择性的原因。  相似文献   

15.
溶剂辅助重力泄油注入压力试验   总被引:1,自引:0,他引:1  
为评价不同注入压力下丙烷抽提稠油能力,通过物性试验和流动试验,评价不同注入压力下稠油和丙烷体系的物性参数和泄油能力.结果表明:低于丙烷饱和蒸气压时,注入压力越大,丙烷在稠油中的溶解度越大,稠油降黏效果越明显,泄油能力极值点出现在丙烷饱和蒸气压附近,之后泄油能力开始降低;在丙烷饱和蒸气压时泄油速度出现大幅变化,丙烷溶解度和稠油降黏幅度变化不大,泄油速度增加是沥青结晶在起主要作用.  相似文献   

16.
采用热重-质谱联用(TG-MS)研究了氮气气氛中花生壳在不同升温速率(5,10和20℃/min)下的热解行为,分析得到了花生壳热裂解过程产生的小分子气相产物(CO2,CH4,H2,CO)随温度和升温速率变化的释放规律.结果表明:花生壳热裂解过程分为四个阶段,升温速率越大,花生壳热解的失重温度区间越宽,最大热解速率峰越陡峭.应用Flynn-Wall-Ozawa法得出花生壳热裂解过程不同转化率(0.2~0.8)下的活化能在57.3~88.6 k J/mol范围内.结合Achar微分法和Coats-Redfern积分法确定了该反应过程的机理函数表达式,将30种常用机理函数一一代入得出花生壳热裂解机理的最概然函数为球形对称的三维扩散Jander方程,反应级数为2级.  相似文献   

17.
为探索海上稠油火烧油层开发的可行性,针对渤海稠油油藏开展了火烧油层物理模拟实验。根据石油沥青组分测定法,分析渤海稠油原油组分;通过热失重与扫描量热同步热分析仪测试活化能等高温氧化反应动力学参数;采用一维燃烧管实验模拟评价燃烧稳定性及驱油效果。研究结果表明,渤海稠油组分特征与国内陆上油田相似;稠油高温氧化活化能为157 kJ/mol,与陆上油田相近;油藏火驱前缘推进稳定,燃烧前缘最高温度773 K左右,出口CO2浓度长期稳定在12%以上,高温氧化燃烧状态良好;火烧驱油效率95.1%,空气油比548 m3/t,驱油效果较好。研究成果为海上稠油油藏火烧油层开发提供技术支持。  相似文献   

18.
改性活性焦低温脱硝实验研究   总被引:1,自引:0,他引:1  
采用浸渍法制备改性活性焦脱并除烟气中的NOx,研究了煅烧气氛、不同改性剂、改性剂浓度、模拟烟气温度对改性活性焦脱硝率的影响.结果表明:经FeSO4,CuSO4,K2CO3,KMnO4四种改性剂改性的活性焦中以FeSO4改性活性焦脱硝效果最佳;纯氮气气氛下煅烧制得的改性活性焦脱硝效果要好于在氮气加水蒸气气氛中获得的改性活性焦;四种不同质量分数(2%,5%,10%,20%)FeSO4改性活性焦的脱硝对比实验结果表明:5%的FeSO4改性制得的活性焦脱硝效果最好;在较低温度(80℃~180℃)范围内时,最佳的脱硝烟气温度为80℃,并且NO脱除率可稳定在40%.  相似文献   

19.
含水条件下正己烷与硫酸镁热化学还原反应体系模拟   总被引:1,自引:0,他引:1  
利用高压釜反应装置,在高温高压含水条件下对正己烷与硫酸镁热化学还原反应体系进行模拟,通过气相色谱仪、微库仑仪、毛细管气相色谱/脉冲火焰光度检测器、红外光谱仪及X射线衍射仪对气、油、固3相产物分别进行分析,并进行动力学研究.结果表明,反应体系在温度425~525℃内可以发生热化学还原反应,主要生成氧化镁、硫、焦炭、硫化氢、二氧化碳以及硫醇、硫醚和噻吩类等一系列有机硫化物,反应活化能为56.404 kJ/mol.  相似文献   

20.
以9组不同配料比的炭黑和单质硅为原料压制成试样, 在氮气气氛下,分别于1350,1400,1450,1500,1550℃下烧结,获得5个不同温度点合成样品: 采用XRD分析技术研究试样的物相演变过程, 研究C-Si系原料在氮气气氛合成过程中的物相变化和反应动力学机制.试验结果表明:试样在氮气气氛下合成,最终物相为SiC,α-Si3N4和β-Si3N4,硅含量高时还存在Si2N2O相,石英相和方石英相作为中间产物出现:氮化硅不仅可由单质硅氮化生成,还可由SiO2,Si2N2O与C还原氮化生成,α-Si3N4先于β-Si3N4生成,且温度升高会向β相转化,温度高于1500℃时,Si3N4会与残余的C反应生成SiC:合成温度和配料比是影响C-Si系原料合成产物的重要动力学因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号