首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用液相还原法制备了纳米Fe/Ni(nZVI/Ni)及纳米零价铁(nZVI),借助TEM、EDS、高效液相色谱仪等探究了Ni对nZVI/Ni还原水体中Cr(Ⅵ)的促进机制。结果表明,Ni的加入可降低Cr(Ⅵ)还原反应的活化能,有效地提高了纳米Fe/Ni对水体中Cr(Ⅵ)的去除率;在改善nZVI/Ni材料还原水体中Cr(Ⅵ)能力方面,Ni阻止Fe~0氧化以及形成Fe-Ni原电池发挥了作用,但其将nZVI腐蚀产物H_2转化为活性氢原子并未能促进Cr(Ⅵ)的还原。  相似文献   

2.
在静态条件下,对PQAAM吸附含重金属离子Cr(Ⅵ)的电镀废水进行了研究,探讨了PQAAM用量、废水pH值、吸附时间、吸附温度对去除Cr(Ⅵ)效果的影响.结果表明,在废水pH值6.0~8.0,Cr(Ⅵ)浓度0~100 mg/L范围内,吸附时间为100 min,吸附温度为20 ℃,按Cr(Ⅵ)与PQAAM质量比为1∶30投加PQAAM进行处理,Cr(Ⅵ)去除率可达98%以上.含Cr(Ⅵ)的电镀废水经PQAMM吸附后,废水中Cr(Ⅵ)的含量显著低于国家排放标准.表5,参9.  相似文献   

3.
研究了酸改性粉煤灰、经十六烷基三甲基溴化铵(CTMAB)改性处理后的钠基膨润土及其二者的复合材料在处理含Cr(Ⅵ)废水中的应用。研究表明,将经4mol/L硫酸常温25℃浸泡7d改性得到的粉煤灰和经CTMAB(质量分数8%)改性后的钠基膨润土按质量比3∶1混合压片制得的复合材料,兼有吸附效果好且价格低廉的优点,为优选吸附材料;并重点考察了溶液初始pH值、复合材料用量、吸附时间和吸附温度对这种复合材料吸附去除水中Cr(Ⅵ)的影响,确定了最优化的吸附条件,即在pH=1~6,用10g/L复合材料吸附5mg/L Cr(Ⅵ),时间60min,Cr(Ⅵ)的去除率可达92%以上,水中剩余质量浓度为0.35mg/L,达到《污水综合排放标准(GB 8978—1996)》的要求。  相似文献   

4.
为了提高土壤中重金属Cr(Ⅵ)的去除率,采用简单高效的吸附法,筛选廉价且吸附效果好的吸附剂成为土壤中重金属去除的研究热点.以农业废弃物花生壳为原料,用FeCl3和ZnCl2改性得到改性花生壳生物质炭(MPS),将其用于土壤中重金属Cr(Ⅵ)吸附研究实验中.考察pH值、投加量、反应温度、初始浓度和反应时间对Cr(Ⅵ)去除率的影响,并对吸附机制进行探讨.结果表明,在pH值为3时,MPS添加量为土壤质量的5%,反应温度为30℃,初始质量浓度为120 mg·L-1,反应时间为120 min,得到的最高去除率为98.23%.参数拟合结果表明,改性花生壳生物质炭Langmuir吸附模型的相关系数R2高达0.993,准二级动力学拟合的相关系数R2为0.987,表明是单分子层反应.  相似文献   

5.
印迹与交联壳聚糖吸附水中微量Cr(VI)的对比试验研究   总被引:1,自引:0,他引:1  
本研究以壳聚糖为原料,戊二醛为交联剂,分别采用直接交联的方法和分子印迹技术制备交联壳聚糖和Cr(Ⅵ)印迹壳聚糖,并对这两种吸附剂对Cr(Ⅵ)的吸附性能进行了研究,考察了pH、反应时间、吸附剂投加量、Cr(Ⅵ)初始浓度、温度对Cr(Ⅵ)去除率的影响.实验结果表明:酸性环境有利于壳聚糖类吸附剂对Cr(Ⅵ)的吸附,pH为6.0时吸附效果最佳.交联壳聚糖和印迹壳聚糖对Cr(Ⅵ)的吸附速率在前20 min较快,90 min即可达到吸附平衡.对30 mg/L 的Cr(Ⅵ)溶液,交联壳聚糖与印迹壳聚糖对Cr(Ⅵ)的去除率随投加量增加而增加,在投加量为3.5 g/L时,对Cr(Ⅵ)的去除率最高可达到92.4%和97.8%.相同实验条件下,印迹壳聚糖对Cr(Ⅵ)的吸附较交联壳聚糖有明显提高,其幅度最高可达7.3%.  相似文献   

6.
本研究以壳聚糖为原料,戊二醛为交联剂,分别采用直接交联的方法和分子印迹技术制备交联壳聚糖和Cr(Ⅵ)印迹壳聚糖,并对这两种吸附剂对Cr(Ⅵ)的吸附性能进行了研究,考察了pH、反应时间、吸附剂投加量、Cr(Ⅵ)初始浓度、温度对Cr(Ⅵ)去除率的影响.实验结果表明:酸性环境有利于壳聚糖类吸附剂对Cr(Ⅵ)的吸附,pH为6.0时吸附效果最佳.交联壳聚糖和印迹壳聚糖对Cr(Ⅵ)的吸附速率在前20 min较快,90 min即可达到吸附平衡.对30 mg/L的Cr(Ⅵ)溶液,交联壳聚糖与印迹壳聚糖对Cr(Ⅵ)的去除率随投加量增加而增加,在投加量为3.5 g/L时,对Cr(Ⅵ)的去除率最高可达到92.4%和97.8%.相同实验条件下,印迹壳聚糖对Cr(Ⅵ)的吸附较交联壳聚糖有明显提高,其幅度最高可达7.3%.  相似文献   

7.
以废茉莉花茶渣作为吸附剂,对含Cr(Ⅵ)溶液进行了吸附研究。分别考察了吸附时间、茶渣投加量、Cr(Ⅵ)初始浓度、茶渣粒径、温度、pH值等因素对废茉莉花茶渣吸附Cr(Ⅵ)的影响。在吸附时间2 h、茶渣投加量为30 g/L、Cr(Ⅵ)初始浓度为40 mg/L、茶渣粒径60目、pH值2.5时,茶渣对Cr(Ⅵ)吸附率达98.7%。温度越高,茶渣对Cr(Ⅵ)吸附效果越好。废茉莉花茶渣对Cr(Ⅵ)具有较好的吸附能力,是比较合适的重金属离子吸附剂。  相似文献   

8.
本文选用松针粉(PNP)为原料,通过酒石酸化学改性制备出了一种新型生物吸附材料(TA-PNP)。考察不同pH值、吸附反应时间和Cr(Ⅵ)溶液初始浓度等因素影响下,TA-PNP对Cr(Ⅵ)的吸附性能;并建立了动力学模型和等温线模型。实验结果表明:室温条件下,pH=2.0,吸附反应时间是60 min,Cr(Ⅵ)初始体积质量为750 mg/L时,TA-PNP对Cr(Ⅵ)吸附效果最佳。此外,TA-PNP吸附方式为化学吸附,颗粒内扩散模型表明总吸附反应速率为膜扩散和内扩散两者共同控制。TA-PNP对Cr(Ⅵ)的吸附行为符合Langmuir等温吸附模型,其最大吸附量为98.62 mg/g。  相似文献   

9.
研究了竹炭对溶液中Cr(Ⅵ)的吸附性能,考察了溶液pH值、竹炭粒径、吸附时间、竹炭用量和溶液初始质量浓度对吸附的影响.实验结果表明:竹炭对Cr(Ⅵ) 的吸附主要受Cr(Ⅵ)溶液的pH值、初始质量浓度和竹炭粒径的影响,pH为1时吸附效果最好.竹炭的动态吸附过程符合二级吸附动力学方程.当Cr(Ⅵ)溶液初始质量浓度为50 mg/L,pH为1,震荡吸附84 h后,吸附量为38.3 mg/g,震荡吸附7 d后,饱和吸附量为46.1 mg/g.竹炭对Cr(Ⅵ)的吸附符合Langmuir和Freundlich 吸附等温方程.  相似文献   

10.
采用水热法将g-C_3N_4和Fe_3O_4负载在剥离膨润土(EB)载体上,制备出具有光催化活性的EB/g-C_3N_4/Fe_3O_4磁性复合材料,进一步将其用于还原土壤中的高价态铬离子,考察了不同土壤pH值、土壤初始Cr(Ⅵ)含量、催化剂剂量等因素对土壤中Cr(Ⅵ)光还原率的影响。实验结果表明:在500 g Cr(Ⅵ)含量为20 mg/kg,pH值为6.15的土壤中,投加Fe_3O_4含量为30%的EB/g-C_3N_4/Fe_3O_4(EB/g-C_3N_4/Fe_3O_4-30%)复合材料1.5 g,光照250 min时,土壤中Cr(Ⅵ)的光还原率可达97%。光还原土壤中Cr(VI)的动力学分析表明:Cr(Ⅵ)的光还原符合Langmuir-Hinshelwood(L-H)动力学模型,相关系数(R~2)为0.997。复合光催化剂材料EB/g-C_3N_4/Fe_3O_4-30%循环使用3次后,其光还原能力和磁回收率仍然保持较高水平。制备的催化剂复合材料EB/g-C_3N_4/Fe_3O_4具有用于铬污染土壤治理的应用前景。  相似文献   

11.
采用KMnO4溶液在回流状态下对颗粒活性炭进行改性,得到新的改性炭。考察了高锰酸钾浓度、pH值、投加量、吸附时间对Cr(Ⅵ)去除率的影响,并测得吸附等温线。结果表明:改性炭对Cr(Ⅵ)的吸附在低pH值时效果更好,且当KMnO4浓度为0.03~0.04mol/L时,得到的改性炭吸附性能非常好;在pH值为4.0及25℃条件下,AC-3(吸附剂编号)对Cr(Ⅵ)的饱和吸附量比AC-0提高了11.6%;当温度由25℃升高到40℃时,AC-3对Cr(Ⅵ)的饱和吸附量提高了28.0%;改性炭对Cr(Ⅵ)的吸附作用符合Langmuir方程。  相似文献   

12.
以戊二醛、三乙烯四胺、乙二胺为原料,制备了聚酰胺树脂.用聚酰胺树脂填充分离柱,在1 mol/L的酸度条件下,以5 mL/min的流速洗脱Cr(Ⅵ),Cr(Ⅵ)被全部吸附而Cr(Ⅲ)不被吸附.被吸附的Cr(Ⅵ)用10g/L氢氧化钠从聚酰胺分离柱上洗脱.分离的Cr(Ⅲ)和Cr(Ⅵ)用棓花青褪色光度法在530 nm下分别测定其含量.此法对10 mg/L的Cr(Ⅵ)和Cr(Ⅲ)测定的相对标准偏差分别为1.24%和1.41%,加标回收率为92.0%和96.8%,实验结果令人满意.  相似文献   

13.
研究了纳米氧化铝对Cr(Ⅵ)的吸附性能,考察了酸度、共存离子等对吸附过程的影响,优化了光谱测定的条件。实验表明:在pH2~2.5时,Cr(Ⅵ)被定量吸附,而Cr(Ⅲ)不被吸附。在超声波的作用下,2mol/LHCl可定量洗脱Cr(Ⅵ)。方法用于实际水样中Cr(Ⅵ)的分析,结果满意。  相似文献   

14.
通过实验室模拟研究将纯水提取与冷冻法相结合修复Cr(Ⅵ)污染土壤的可行性.结果表明,对于1 000 mg/kg Cr(Ⅵ)污染土壤,利用纯水进行提取,总铬的提取率约为35%,该结果与常规的草酸提取法相近.向纯水提取液中加入草酸,使其浓度为500μmol/L,冷冻结冰后,提取液中Cr(Ⅵ)的还原率达97%. NaCl, NaNO3,Na2SO4对Cr(Ⅵ)的去除效果有微弱的抑制作用.紫外吸收光谱、 X射线光电子能谱、红外光谱和三维荧光光谱测试结果表明,该方法的作用原理为草酸提供H+,土壤中的溶解性有机质(DOM)作为还原剂,通过冷冻浓缩效应使土壤提取液中六价铬被还原.可见,纯水提取与草酸冷冻法相结合可用于异位修复Cr(Ⅵ)污染土壤,并可减少化学试剂的用量,有利于维护土壤理化性质的稳定.  相似文献   

15.
研究了用201×7型阴离子交换树脂吸附Cr(Ⅵ),使之与Cr(Ⅲ)及共存离子分离,抗坏血酸-硫酸混合液还原洗脱Cr(Ⅵ),火焰原子吸收光谱法测定环境水样中铬形态.分析了试液上柱酸度、洗涤及洗脱等分离条件对实验结果的影响.结果表明,在最优条件下,测定Cr(Ⅵ)和Cr(Ⅲ)时,相对标准偏差分别为1.2%和1.9%;加标回收率均为98%.方法检出限为0.6 μg/L.  相似文献   

16.
用磷酸改性和甲醛-硫酸改性核桃壳吸附模拟废水中Cr(Ⅵ),探讨了核桃壳投加量、吸附时间、水样初始p H值和初始浓度等因素对Cr(Ⅵ)吸附效果的影响,通过扫描电子显微镜(SEM)和红外光谱(IR)表征核桃壳的结构.实验结果表明,磷酸改性核桃壳对Cr(Ⅵ)的去除率为99.4%,最大吸附容量为3.24 mg/g,甲醛-硫酸改性核桃壳对Cr(Ⅵ)的去除率为98.4%,最大吸附容量为8.23 mg/g.未改性核桃壳和甲醛-硫酸改性核桃壳对Cr(Ⅵ)的吸附等温线更符合Freundlich等温吸附方程,磷酸改性核桃壳的吸附等温线与Langmuir等温吸附方程拟合地更好.  相似文献   

17.
以钝顶螺旋藻和磁性纳米粒子四氧化三铁为材料,采用海藻酸钙进行包埋制备出钝顶螺旋藻磁性生物吸附剂,从pH、温度、吸附动力学等方面研究钝顶螺旋藻磁性生物吸附剂对Cr(Ⅵ)的吸附性能。研究结果表明:当pH为1.5,温度为40℃时,吸附效果最好,时间在120 min时吸附容量达到饱和吸附量的96.5%;随Cr(Ⅵ)离子初始浓度的增加,吸附量增加,吸附效率减小。且与海藻酸钙吸附行为显著不同,说明主要是由钝顶螺旋藻对Cr(Ⅵ)离子吸附作用;钝顶螺旋藻磁性生物吸附剂对Cr(Ⅵ)的吸附过程可用Langmuir和Freundlich等温模型进行描述;同时,磁性生物吸附剂具有较强的磁性,在加有外界磁场的情况下,能快速地实现固液分离和回收,可简化重金属离子吸附的后续处理。  相似文献   

18.
文章为探明表面活性素促进粗毛栓菌D2富集/吸附铬的可能原因,对表面活性素浓度对粗毛栓菌D2富集/吸附铬的影响进行了研究,并分析了表面活性素与铬的配合反应、表面活性素对粗毛栓菌细胞通透性的影响。实验结果表明:当表面活性素浓度为0.20 mmol/L时,粗毛栓菌D2富集/吸附Cr(Ⅲ)的量达到最大,比对照样(无表面活性素)分别增加了817.73%(富集)和152.18%(吸附);当表面活性素浓度为0.40 mmol/L时,粗毛栓菌D2富集/吸附Cr(Ⅵ)的量比对照样分别增加了558.65%(富集)和222.22%(吸附)。配合实验表明,表面活性素能与铬形成溶解度较低的配合物,降低了溶液中的铬离子浓度;表面活性素能够增加粗毛栓菌细胞通透性,促进细胞对金属离子的吸收。表面活性素促进粗毛栓菌富集/吸附Cr(Ⅲ)和Cr(Ⅵ)的主要原因是其能够增加细胞通透性。  相似文献   

19.
通过单因素实验,研究了铁观音茶梗作为一种新型吸附剂,将水体中毒性极强的重金属Cr(Ⅵ)还原为低毒性甚至无毒的Cr(Ⅲ)的去除效果。通过吸附等温模型和吸附动力学模型对试验参数进行拟合,并通过SEM、BET、FTIR、XPS等多种表征方法对吸附机理进行探讨。结果表明:茶梗粒径越大、投加量越多,pH≤11时,茶梗对Cr(Ⅵ)都有较高的去除率;且共存离子Ca(Ⅱ)和Ni(Ⅱ)对茶梗还原吸附Cr(Ⅵ)的影响很小。吸附过程较好地符合Freundlich吸附等温模型和准二级动力学模型。一定条件下,铁观音茶梗、普洱茶茶梗、甲醛改性茶梗对Cr(Ⅵ)的去除效果优于活性炭。表征结果证明茶梗主要通过还原吸附作用去除水中的Cr(Ⅵ),羟基、氨基和酰基等活性基团参与了Cr(Ⅵ)的还原吸附。  相似文献   

20.
磁场作用下壳聚糖希夫碱对铬离子的吸附性能   总被引:1,自引:1,他引:0  
在合成壳聚糖希夫碱的基础上,为探讨磁场作用下壳聚糖(CTS)及其改性后的壳聚糖希夫碱(CSB)对Cr(Ⅵ) 的吸附特性,研究了磁场强度和磁场处理时间、Cr(Ⅵ)溶液酸度和初始质量浓度等因素对吸附Cr(Ⅵ)的影响.结果表明:壳聚糖希夫碱比改性前的壳聚糖吸附Cr(Ⅵ)的性能强,其饱和吸附量由0.34mg/g提高到0.93mg/g;达到吸附饱和的时间由120min缩短到60min;磁场处理可进一步增强壳聚糖和壳聚糖希夫碱的吸附性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号