首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
铝热自蔓延制备CuCr合金渣系的粘度测量及模型建立(Ⅰ)   总被引:1,自引:3,他引:1  
根据Al2O3基渣系的结构特点将S.C.Du和S.Seetharaman等人的粘度数学模型应用于非二氧化硅体系,建立了针对铝热反应测量渣系粘度的模型·根据添加剂选择原则结合相图研究了CaO Al2O3和CaO Al2O3 MgO体系作为铝热自蔓延制备CuCr合金渣系组分的可行性·由实验测量值和模型计算值比较分析,该模型处理以Al2O3为基体的渣系是成功的·  相似文献   

2.
单纯的实验测定已无法满足对熔渣黏度数据的实际需求,利用D.Sichen和S.Seetharaman等人的黏度模型和熔渣的正规溶液(RS)模型理论,建立了熔渣组元吉布斯黏流活化能、吉布斯混合自由能以及组成与熔渣黏度的函数关系,即熔渣黏度估算模型.并估算、测量了CaF2-CaO,Al2O3-CaO两个体系渣样的黏度.结果表明:对于CaF2-CaO渣系,黏度测量值与修正模型估算值吻合很好;对于Al2O3-CaO渣系,模型估算值与黏度测量值基本吻合,但在共晶点组成渣样的模型估算值与实际测量值吻合得更好.  相似文献   

3.
CaO-Al_2O_3-CaF_2-SiO_2渣系的黏度   总被引:2,自引:0,他引:2  
采用内旋转圆柱法测量了不同组成的CaO-Al2O3-CaF2-SiO2渣系的黏度,采用XRD分析技术对高温熔炼渣的物相进行分析,并计算了各渣样的黏流活化能.结果表明:当w(CaO)/w(Al2O3)一定,配渣中SiO2质量分数低于8%时,对渣样的高温黏度并没有明显的影响,在1 490℃以上时,熔渣黏度都低于0.5Pa.s;当SiO2质量分数增加到10%,渣样的高温黏度开始显著降低,温度高于1 440℃时,黏度值低于0.2Pa.s.随着SiO2含量的增加,熔渣的碱度逐渐降低,破坏了原来熔渣的大网状结构,熔渣的黏度明显降低.渣系的黏流活化能变化趋势与渣样的黏度值变化趋势一致.  相似文献   

4.
采用内旋转圆柱法测量了不同组成的CaO-Al2O3-CaF2-SiO2渣系的黏度,采用XRD分析技术对高温熔炼渣的物相进行分析,并计算了各渣样的黏流活化能.结果表明:当叫(CaO)/w(Al2O3)一定,配渣中SiO2质量分数低于8%时,对渣样的高温黏度并没有明显的影响,在1490℃以上时,熔渣黏度都低于0.5Pa·s当SiO2质量分数增加到10%,渣样的高温黏度开始显著降低,温度高于1440℃时,黏度值低于0.2Pa·s.随着SiO2含量的增加,熔渣的碱度逐渐降低,破坏了原来熔渣的大网状结构,熔渣的黏度明显降低.渣系的黏流活化能变化趋势与渣样的黏度值变化趋势一致.  相似文献   

5.
为探明造成高铅渣物理化学性能测定中实际值与理论值偏差的原因,本研究配制了Pb O-Fe Ox-Ca OSi O_2-Zn O系渣。利用TG-DSC热重差热分析仪分析了不同组分含量熔渣的失重变化规律,采用FACTSage软件计算炉渣熔点、粘度,并与实验测定结果进行了对比,分析了性能偏差规律。研究结果表明,对w(Pb O)=20%~40%的中、高铅渣,熔渣在736~1 450℃时铅的挥发率大约15%~16%;当w(Fe O)/w(Si O_2)设置在1.29~2.05和w(Ca O)/w(Si O_2)=0.40时,实际测定的渣熔点与炉渣挥发后理论熔点之间的偏差(ΔT_(a-vv))介于+34~+190℃,实测粘度与理论粘度偏差(Δη_(a-vv))介于+0.17~0.32 Pa·s;而w(Ca O)/w(Si O_2)=0.80时,ΔTa-vi值较小,介于+3~+92℃,实测值更接近理论值。依据不同熔渣组分在给定温度下的挥发规律以及ΔT_(a-vv)和Δη_(a-vv)偏差结果,可以对给定的初始渣组分的实际熔点及粘度值进行预测,并可根据实测值来预测可能的渣组分。  相似文献   

6.
熔渣粘度对冶炼过程中渣金反应的传质有着至关重要的作用,适当的熔渣粘度能够有效促进渣金反应,提升传质效率。为了促进含铬熔渣中铬的回收利用,本文使用柱体旋转法研究了Al2O3含量变化对CaO-SiO2-Cr2O3-Al2O3渣粘度和结构的影响规律。熔渣在高温下表现出良好的牛顿流体行为。当Al2O3含量从0%增加到10wt%时,酸性渣的粘度首先从0.825增加到1.141 Pa·s,然后当Al2O3含量进一步增加到15wt%时,粘度降低到1.071 Pa·s。当Al2O3含量从0增加到15wt%时,碱性炉渣的粘度首先从0.084增加到0.158Pa·s,然后当Al2O3含量进一步增加到20wt%时,粘度降低到0.135 Pa·s。此外,含Cr2O3的炉渣比无Cr2O3的炉渣需要更少的Al2O3才能达到最大粘度;对于酸性和碱性炉渣,熔渣粘度达到最大值所需的Al2O3含量分别为10%和15%。熔渣的活化能变化规律与粘度结果一致。拉曼光谱表明,熔渣中仅有少量Al2O3时,Al以[AlO4]四面体形式出现,随着Al2O3含量的逐渐增加,[AlO4]四面体被[AlO6]八面体所取代,对硅酸盐结构的分峰解谱结果也与粘度结果一致。  相似文献   

7.
本文根据文献热力学数据,导出了反应; [Mg]%_(F~0)+[O]%=MgO_((s))的标准自由能变化ΔG°=-505009+145.03T,J.mol~(-1)(1780≤T≤2000°k)进而用热力学分析了GH36合金在含MgO或MgF_2渣系中电渣重熔合金中Si、Mn等成分对产生或保持合金中含有≥0.0020Wt%Mg的不可能性,提出了含Mg的GH36A合金电渣重熔时自耗电极中含有少量Al的必要性。研究了原始Al含量([Al]_0)、原始Mg含量([Mg]_0)以及熔渣成分对锭中Mg含量[Mg]的影响。当渣池温度为1690±10℃,0.32≤[Al]_0≤0.62Wt%,0.0035≤[Mg]_0≤0.0140Wt%,熔渣成分为0.10≤N_(MgO)≤0.30,0.05≤N_(Al_2O_3)≤0.21,N_(CaO)≤0.15范围,建立了GH36A合金电渣重熔控制[Mg]的关系式。 研究发现,含有适量的Mg、Al的GH36A合金可大幅度地提高合金在650℃,372.65×10~6Pa的缺口、光滑持久寿命,消除合金缺口敏感性。  相似文献   

8.
CaO-SiO_2-Na_2O-CaF_2-Al_2O_3-MgO渣系的粘度和结晶温度   总被引:3,自引:3,他引:3  
采用CaOSiO2Na2OCaF2Al2O3MgO渣系,用差热分析仪测定熔渣的结晶温度,用粘度测定仪测定熔渣的粘度,研究结晶温度和粘度与碱度、w(Na2CO3)、w(CaF2)、w(Al2O3)和w(MgO)之间的关系,并得到相应的回归方程·利用这两个回归方程,可以预测连铸保护渣的结晶性能和粘性特征·化学成分通过改变粘度,来影响晶核形成速度和晶体成长速度,从而决定了熔渣的结晶性能·结晶温度随着粘度的减小而升高·渣系中只有MgO可以在减小粘度的同时降低结晶温度  相似文献   

9.
针对轴承钢中钙铝酸盐大型夹杂物的控制问题,通过计算GCr15轴承钢中尖晶石MgO·Al2 O3、钙的铝酸盐CaO·6Al2 O3夹杂物生成热力学,分析精炼渣成分与夹杂物类型之间的定量关系.结果表明:当钢水中含有质量分数0.10×10-6的溶解钙[Ca]时,只要溶解镁[Mg]质量分数小于10×10-6,MgO·Al2O3就会被[Ca]还原成 CaO·6Al2O3;当精炼渣碱度为7.04,(MgO)质量分数为1.38%时,钢水中溶解[Mg]质量分数比临界[Mg]质量分数低56%,夹杂物以尺寸大于10μm的CaO-Al2O3系复合夹杂为主;当精炼渣碱度为3.75,(MgO)质量分数3.14%时,钢水中溶解[Mg]质量分数比临界[Mg]质量分数低14%,夹杂物以尺寸小于8μm的MnS包裹MgO·Al2 O3复合夹杂为主;当精炼渣钙铝比C/A为1.8~2.0时,控制精炼渣碱度R为4.5~5.5,(MgO)质量分数为3%~5%,即能使钢中MgO·Al2O3保持稳定而不转变为CaO·6Al2O3.  相似文献   

10.
杨景军  成国光 《科学技术与工程》2014,14(11):147-150,161
为了在高铝钢中得到最低的溶解氧含量,必须找到CaO-Al2O3-MgO体系中Al2O3活度最低点的位置。因此,利用炉渣结构的共存理论,结合CaO-Al2O3-MgO相图,利用Matlab软件计算了CaO-Al2O3-MgO体系中Al2O3活度。通过对不同模型计算出的CaO-Al2O3渣系中Al2O3活度值比较,表明其变化趋势基本相同。由共存理论对CaO-Al2O3-MgO体系中Al2O3活度进行计算得到,在一定的MgO含量下,随着CaO含量增加,炉渣中Al2O3活度降低;在一定的CaO含量下,随着MgO含量增加,炉渣中Al2O3活度降低,且Al2O3活度最低值在CaO和MgO均达饱和的区域。  相似文献   

11.
测定了合成的不同成份的FeO-CaO-MgO系炉渣的粘度,得知:在炉渣中,当mFe/mso2为1.2~1.5,ωMgO为6%~9%,ωFe3O4为3%~4%,ωCaO为0~9%,温度范围为1250~1450℃时,炉渣粘度随ωFe/ωSiO2和ωCaO的升高而降低,随着ωMgO的升高而增大;在1350℃以上时,上述变化关系则不明显.对于闪速炼镍所采用的FeO-SiO2-CaO-MgO系炉渣,在一般的冶炼操作温度(1300~1350℃)下,当渣中ωMgO高达6%~8%时,仍可获得流动性能良好的渣;当ωMgO在9%以上时,则渣的粘度迅速上升以致不适合于冶炼.同时,在炉渣总量不变的情况下,在一定的范围内通过减少SiO2的加入量和补加CaO含量可使炉渣粘度得到改善.  相似文献   

12.
根据分子和离子共存理论,建立了CaO-Al2O3和CaO-SiO2-Al2O3渣系的活度计算模型,并利用模型对渣中各组元的活度进行了计算,分析了w(CaO)对渣中组元活度的影响.结果表明,在CaO-Al2O3渣系中,当w(CaO)小于45%时,随着w(CaO)的增加,3CaO·Al2O3和12CaO·7Al2O3的活度不断升高,而CaO·Al2O3的活度变化不大;当w(CaO)大于45%时,随着w(CaO)的增加,CaO·Al2O3和12CaO·7Al2O3的活度不断降低,而3CaO·Al2O3的活度则略有升高.在CaO-SiO2-Al2O3渣系中,12CaO·7Al2O3的活度低于其在CaO-Al2O3渣系中的活度,随着w(CaO)的增加,CaO和3CaO·Al2O3的活度不断升高,2CaO·SiO2的活度则不断降低,CaO·Al2O3的活度呈现先升高后降低的趋势.  相似文献   

13.
原位生成Sialon增强Al2O3-SiC-C铁沟浇注料抗渣机理研究   总被引:2,自引:3,他引:2  
采用静态坩埚法进行了Sialon增强Al2O3-SiC-C铁沟浇注料的抗渣实验.结果表明,该种铁沟料具有比传统铁沟料更优异的抗渣性能.通过X-射线衍射和SEM分析可知,其抗渣机理为添加的Si3N4,Si与Al2O3发生原位反应生成Sialon,使材料内部结合更加紧密,并且生成的Sialon活性较高,氧化放出气体,阻止熔渣的渗入;其次,Sialon向熔渣中溶解,使熔渣成为含N的高硅玻璃,粘度增大;此外,Al2O3与熔渣的MgO反应生成MgAl2O4,形成一阻挡层,这也是Sialon增强Al2O3-SiC-C浇注料具有优异的抗渣渗透及侵蚀性能的重要原因.  相似文献   

14.
分析了向CaO-Al2O3基熔渣中添加Na2O对熔渣性能的影响,并比较了几种不同的添加剂对渣系黏度的影响.研究表明:w(CaO)/w(Al2O3)=1.1时,渣系中随着Na2O含量的增加,CaO-Al2O3渣系的黏度先降低后升高,在Na2O质量分数为4%处出现极小值;Na2O的添加还会导致CaO-Al2O3渣系的熔化温度升高;Na2O,Li2O和MgO都可以降低CaO-Al2O3渣系的黏度,其降低渣系黏度的能力由大到小依次为Li2O〉Na2O〉MgO.综合考虑Na2O对渣系黏度和熔化温度的影响,Na2O在CaO-Al2O3渣系中的加入量以不超过4%为宜.  相似文献   

15.
通过向BaF2-Al-Mg渣系自保护药芯焊丝药芯中加入稀土氧化物CeO2,研究了CeO2对该渣系自保护药芯焊丝焊接工艺及熔敷金属低温冲击韧性的影响.研究表明,用适量CeO2代替传统使用的MgO、Al2O3加入到药芯中,经冶金反应生成铈铝复合氧化物CeAlO3,能够有效调整熔渣的物化性能,减小焊接飞溅,改善熔渣覆盖和脱渣性;更为重要的是,以CeO2代替MgO、Al2O3造渣,降低了熔敷金属中大尺寸AIN、MgO·Al2O3等脆性夹杂物的含量,从而提高并稳定了自保护药芯焊丝熔敷金属的低温冲击韧性.  相似文献   

16.
为了消除保护渣在使用过程中氟溶解到水中造成的危害,提出了开发高Al2 O3含量的保护渣.研究了不同含量的Al2 O3对保护渣熔渣水浸液中F-质量浓度和pH值的影响,并利用X射线光电子能谱分析了Al2 O3含量对保护渣熔渣结构的影响.当Al2 O3的质量分数为4%时,保护渣迁移到水中的F-质量浓度为22.8~35.4 mg·L-1,pH值的变化范围为4.0~9.5;当Al2 O3的质量分数由4%增加到34%,F-质量浓度和pH值的变化范围均是先急剧减小后略有增加的趋势. X射线光电子能谱分析显示:增加保护渣中Al2 O3的含量时,保护渣中Al2 O3通过形成Al—F共价键,抑制了氟的浸出.控制保护渣中Al2 O3的质量分数在16%~34%的范围,则实验水样中F-质量浓度在4.0~10.0 mg·L-1的范围,pH值在6.5~7.5的近中性范围,可减弱氟浸出造成的危害.  相似文献   

17.
以3种现场高炉渣成分为基础,用分析纯试剂配制高炉渣试样,分别改变试样的Al2O3,MgO质量分数和碱度,通过实验找出单一改变Al2O3,MgO质量分数和碱度对试样粘度和熔化性温度的影响规律,为高铝矿冶炼的造渣制度制定提供参考。研究表明,当Al2O3质量分数在15%~19%波动时,随着MgO质量分数的升高,渣样的粘度降低,但熔化性温度先降后升;随着Al2O3质量分数的上升,渣样的粘度和熔化性温度上升;碱度1.2的渣样粘度和熔化性温度大于碱度1.1的渣样。  相似文献   

18.
在1300℃下,通过向CaO-SiO2-FetO-P2O5系熔渣中浸入固相CaO的方法,分析了CaO-SiO2-FetO-P2O5渣系与固相CaO间的反应过程,利用分子离子理论计算了炉渣中各组元的活度,研究了2CaO·SiO2-3CaO·P2O5固溶体的形成机理.研究结果表明,CaO-SiO2-FetO-P2O5渣系中组元主要是以2CaO·SiO2和3FeO·P2O5化合物的形态存在;当固相CaO和炉渣接触时,渣中的2CaO·SiO2首先在固相CaO表面析出并形成2CaO·SiO2固相层;随着CaO组元和3FeO·P2O5化合物向反应界面的不断扩散,生成了2CaO·SiO2-3CaO·P2O5和CaO-FeO固溶体.  相似文献   

19.
采用近似无限大流体重力沉降原理分析了多期法FeV50合金浇铸过程渣金分离及浇铸渣层钒的分布规律,考察了熔渣黏度、沉降粒度、浇铸温度、渣层厚度以及保温制度对渣中钒含量的影响.结果表明,浇铸渣中钒的赋存形式除了未还原完全的钒氧化物之外,还存在部分未完全沉降的初级合金;合金沉降速度随合金粒度的增加而增大,随熔渣黏度的增加而减小.1850℃条件下,当渣层厚度为50 mm,熔渣组分质量分数为65.2%Al2 O3、15.5%CaO、14.6%MgO、1.9%Fe2 O3、0.9%SiO2时,粒径为100μm的合金沉降时间及熔渣上浮时间分别为24.9和1.2 min.基于此,进行浇铸工艺优化试验,在渣层厚度35 mm,浇铸温度1900℃、熔渣主要成分质量分数Al2 O360%~65%、CaO 15%~20%、MgO 9%~15%、浇铸锭模保温层厚度9 cm的条件下,浇铸渣中平均TV质量分数由1.39%降低至0.58%.  相似文献   

20.
以分析纯化学试剂为原料,研究了不同F含量的CaO-Al2O3-SiO2三元系铝酸钙熟料的自粉性能、烧结规律和Al2O3的浸出性能,并通过XRF,XRD,SEM-EDS等手段探索了其作用机理.结果表明:F的加入不影响β-2CaO·SiO2向γ-2CaO·SiO2转变,熟料的自粉性良好;F对铝酸钙熟料的物相组成产生明显影响,促进2CaO·Al2O3·SiO2和11CaO·7Al2O3·CaF2相的生成,并减少12CaO·7Al2O3,CaO·Al2O3相的生成;生成的2CaO·Al2O3·SiO2进入渣中造成Al2O3浸出率降低;当F的质量分数为0~20%时,Al2O3的浸出率随着F含量的增加急剧下降,由9501%降至70%左右;铝酸钙熟料中F的质量分数应低于05%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号