首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
基于重带轻带收敛简并和合金散射,通过调整掺杂可以使Mg2Si1-xSnx材料在增加态密度的同时保证载流子迁移率不下降,进而获得较高的热电性能。以氢化镁代替单质镁粉,以重金属Bi作为施主原子,采用一步合成工艺制备出高纯度n型Mg2Si1-xSnxBiy基半导体热电材料;通过改变反应物的配比,研究了Si/Sn比和Bi的含量对Mg2Si1-xSnxBiy热电材料能带结构和热电性能的影响。结果表明,本热电材料断口呈现多晶板条层状结构,层与层之间的平均间距小于200nm;Sn含量的增加有利于通过增加晶格畸变降低晶格热导;适量的Bi则可通过施主掺杂有效提高其电性能,最终提高其综合热电优值;当温度为775 K时,Mg2Si0.6Sn0.4Bi0.01的热电优值达到1.29。本合成法工艺简单,产物成分易于控制,可成功制备出纯净的纳米复合Mg2Si1-xSnxBiy热电材料。  相似文献   

2.
本文考察Bi再掺杂对Mg_2Si_(0.985)Bi_(0.015)基体的组成、微观结构以及电子输运与热导率等方面的影响。采用X线衍射仪(XRD)和电子能谱(EDS)等对样品进行表征分析。结果表明:再掺杂的Bi除部分进入Mg_2Si_(0.985)Bi_(0.015)基体外,其余在晶界处生成Mg3Bi2。由于Mg2Si中Bi量的提高使得载流子浓度增加,进而增大样品的电导率,而塞贝克系数受载流子浓度变化和杂相的影响甚微。热导率则因Bi量增加和杂相的存在略有降低。在873 K时,2%Bi再掺杂样品的最高热电优值(ZT)为0.78,比未再掺杂样品提升约10%,说明Bi再掺杂对Mg2Si基体材料热电性能有一定提升作用。  相似文献   

3.
本文利用传统固相烧结法制备了Cd1?xSrxO(x=0,0.01,0.03,0.05)多晶块体并研究了Sr掺杂对Cd O高温热电性能的影响.在Cd O中掺杂Sr O会使样品的载流子浓度降低,导致其电阻率和塞贝克系数绝对值增大.同时,Sr的引入抑制了Cd O多晶的晶粒生长,导致其尺寸减小、晶界增多.随着Sr掺杂浓度的提高,样品的电子热导率和声子热导率均呈现出下降趋势,使得总热导率大幅度降低,Cd0.95Sr0.05O样品的热导率在1000 K时仅为1.71 W m?1 K?1,低于多数氧化物热电材料.由于总热导率的降低,所有掺杂样品的热电性能均得到了提升,其中,Cd0.97Sr0.03O多晶样品在1000 K时的ZT值达到了0.40,比非掺杂Cd O多晶样品提高了25%,可与目前报道的最好的n型氧化物热电材料相比拟.  相似文献   

4.
采用感应熔炼结合快速感应热压方法制备了K_xSn_(1-x)SeBr_x(x=0,0.01,0.02,0.03,0.04,0.05,0.06)系列样品,研究了KBr掺杂对多晶Sn Se热电性能的影响.当温度为373 K时,x=0.05的样品电导率达到39.12 S/cm,是纯Sn Se的24倍;同时在T=810 K时获得一个较低的晶格热导率0.26 W/(m·K),峰值ZT达到了0.85,提高了70%.结果表明:KBr掺杂能有效提高Sn Se材料在中低段(300~700 K)的热电性能.  相似文献   

5.
本文采用基于密度泛函理论的第一性原理方法研究了Bi,Se,Te在缺陷(单空位,B掺杂和N掺杂)石墨烯上的吸附结构及电子和磁性质.研究表明:在能量稳定的Bi(Se)/石墨烯吸附体系中,Bi吸附诱导产生磁性;在空位缺陷石墨烯上的吸附会改变费米能级处态密度分布,影响体系的导电性质;在B(N)掺杂吸附体系中,B比N对吸附原子的影响大;除Se在B掺杂石墨烯上吸附外,Bi,Se,Te在其它n/p型掺杂吸附体系中均显示磁性.缺陷增强了Bi,Se,Te与石墨烯之间的相互作用,对吸附体系的电子结构和电荷分布有较大的影响.  相似文献   

6.
根据影响 P型 (Bi XSb1 - X) 2 Te3半导体热电材料优值系数的主要因素和大量实验结果 ,采用高纯原料、筛选配方、慢速区熔长晶及退火等优化工艺 ,在晶锭的相当长的范围内获得了晶体结构完整、热电性能均匀、优值系数高达 3.46的半导体热电材料  相似文献   

7.
采用固相反应法与无压烧结法相结合制备了ABO3型钙钛矿(Nd0.62Li0.15)TiO3晶体陶瓷材料,并对其热电性能进行了表征.高分辨率透射电镜观察显示,制备的材料具有纳米超晶格结构,导致材料表现出玻璃态热传导特征且热导率小于2W/(m·K),该玻璃态热传导源于超晶格结构形成的大量纳米域界面对声子的强烈散射.A位空位填充使材料的电子电导率得到了明显改善,但对材料的热导率影响不大.塞贝克系数因为TiO6八面体的扭曲而受到一定的影响.在测试温度范围内,块体陶瓷在500K时得到了最高的无因次热电优值(ZT)0.019.  相似文献   

8.
机械合金化法制备Co掺杂β-FeSi_2及性能分析   总被引:1,自引:0,他引:1  
用机械合金化法成功制备了配比为Fe1-xCoxSi2(x=0.04,0.05,0.06)的N型β-FeSi2基热电材料.研究结果表明:在球料质量比为80∶ 1,球磨速度为400 r/min的条件下,球磨20 h的粉体发生完全合金化,生成β-FeSi2,α-Fe2Si5和ε-FeSi的合金相;经过1 373 K退火2 h,再结合1 073 K退火2 h的热处理后,可完全获得晶粒细小的N型块状β-FeSi2;随着测量温度的升高,Fe1-xCoxSi2试样的Seebeck系数α和电导率σ增大,热导率κ降低,无量纲热电优值ZT随温度升高而明显增大;随着掺杂量的增加,材料的电导率σ增大,热导率κ降低,σ/κ比值得到提高,但Seebeck系数α降低;当T=695 K,掺杂量x=0.04时,Seebeck系数α的最大绝对值为227 μV/K;具有最佳热电优值的材料为Fe0.95Co0.05Si2.  相似文献   

9.
Mg3Sb2材料是优秀的中温区热电材料,具有极低的热导率,然而其载流子浓度偏低。通过机械合金化法结合放电等离子烧结(SPS)技术制备n型Mg3.2Y0.05Sb1.5Bi0.5Teδ样品,并研究了其热电传输性能。结果表明阴离子位掺杂元素Te可以进一步提高阳离子位掺杂的Mg3.2Y0.05Sb1.5Bi0.5材料的载流子浓度。载流子浓度从5.02×1019 cm-3增加到9.76×1019 cm-3,接近理论预测的最佳值,同时功率因子也从10.89μW·K-2·cm-1提高到15μW·K-2·cm-1.此外,Te元素进入晶格后,材料的晶格热导率也有大幅的降低,从0.92 W·m...  相似文献   

10.
基于热电材料特性,通过热电平衡方程和本构方程,得出热电材料梁瞬态模型的控制方程.采用分离变量法结合模型的初始条件和边界条件求出热电材料梁的非线性瞬态温度场,根据热应力理论分析求出瞬态热应力场,利用数学软件MATLAB给出了热电材料梁的呈抛物线分布的瞬态温度场和瞬态热应力场的特性曲线,研究了热冲击载荷下的热电材料梁在热电耦合环境中的热应力分析.讨论了不同时刻温度场和应力场随厚度的变化,以及对比p型和n型Bi2Te3热电材料梁热应力特性曲线.结果表明:瞬态温度场受其瞬态项的影响随厚度增加有增有减;瞬态温度场和瞬态热应力场随时间的增加最终趋于稳态不再随时间变化;趋于稳态后的Bi2Te3热电材料梁的热应力最值大于瞬态下的热应力最值;p型Bi2Te3热电材料梁的热应力总是大于n型Bi2Te3热电材料梁的热应力.  相似文献   

11.
High-performance (Bi2Te3)x(Sb2Te3)1?x bulk materials were prepared by combining fusion technique with spark plasma sintering, and their thermoelectric properties were investigated. The electrical resistivity and Seebeck coefficient increase greatly and the thermal conductivity decreases signi ficantly with the increase of Bi2Te3 content, which leads to a great improvement in the thermoelectric figure of merit ZT. The maximum ZT value reaches 1.33 at 398 K for the composition of 20%Bi2Te3-80%Sb2Te3 with 3% (mass fraction) excess Te.  相似文献   

12.
Bi2Te2.7Se0.3of high performance doped with Gd bulk materials was prepared by a high pressure(6.0 GPa) sintering(HPS) method at 593 K,633 K, 673 K and 693 K. The sample was then annealed for 36 h in a vacuum at 633 K. The phase composition, crystal structure and morphology of the sample were analyzed by X-ray diffraction and scanning electron microscopy. The electric conductivity, Seebeck coefficient, and thermal conductivity aspects of the sample were measured from 298 K to 473 K. The results show that high pressure sintering and the doping with Gd has a great effect on the crystal structure and the thermoelectric properties of the samples. The samples are consisted of nanoparticles before and after annealing, and these nanostructures have good stability at high temperature. HPS together with annealing can improve the TE properties of the sample by decreasing the thermal conductivity of the sample with nanostructures. The maximum ZT value of 0.74 was obtained at 423 K for the sample, which was sintered at 673 K and then annealed at 633 K for 36 h. Compared with the zone melting sample, it was increased by 85% at423 K. Hence the temperature of the maximum of figure of merit was increased. The results can be applied to the field of thermoelectric power generation materials.  相似文献   

13.
With the capacity of energy conversion from heat to electricity directly, thermoelectric materials have been considered as an alternative solution to global energy crisis. In this work, Cu modified Bi_(0.5)Sb_(1.5)Te_3(BST)composites are prepared by a facile electroless plating Cu method, spark plasma sintering, and annealing. The annealed 0.22 wt.%Cu/BST has an enhanced peak Figure of Merit(z T) of ~ 0.71 at 573 K with high average z T of0.65 in the wide temperature range between 300 and 573 K. Due to the significant increase of electrical conductivity and low lattice thermal conductivity, the annealed 0.22 wt.%Cu/BST shifts peak z T to high temperature, and shows 492% enhancement than that of pristine BST with z T of 0.12 at 573 K. Through detailed structural characterization of the annealed 0.22 wt.%Cu/BST, we found that Cu can dope into BST matrix and further form Cu2 Te nanoprecipitates, dislocations, and massive grain boundaries, leading to a low lattice thermal conductivity of 0.30 Wm-1 K-1 in the annealed 0.22 wt.%Cu/BST. Such enhanced peak z T in high-temperature and high average z T in the wide temperature range shows that the electroless plating Cu method and annealing can improve the thermoelectric performance of commercial BST and expand the applicability of Bi_2Te_3 thermoelectric materials in the power generations.  相似文献   

14.
Thin-film thermoelectric devices with high room-temperature figures of merit   总被引:46,自引:0,他引:46  
Thermoelectric materials are of interest for applications as heat pumps and power generators. The performance of thermoelectric devices is quantified by a figure of merit, ZT, where Z is a measure of a material's thermoelectric properties and T is the absolute temperature. A material with a figure of merit of around unity was first reported over four decades ago, but since then-despite investigation of various approaches-there has been only modest progress in finding materials with enhanced ZT values at room temperature. Here we report thin-film thermoelectric materials that demonstrate a significant enhancement in ZT at 300 K, compared to state-of-the-art bulk Bi2Te3 alloys. This amounts to a maximum observed factor of approximately 2.4 for our p-type Bi2Te3/Sb2Te3 superlattice devices. The enhancement is achieved by controlling the transport of phonons and electrons in the superlattices. Preliminary devices exhibit significant cooling (32 K at around room temperature) and the potential to pump a heat flux of up to 700 W cm-2; the localized cooling and heating occurs some 23,000 times faster than in bulk devices. We anticipate that the combination of performance, power density and speed achieved in these materials will lead to diverse technological applications: for example, in thermochemistry-on-a-chip, DNA microarrays, fibre-optic switches and microelectrothermal systems.  相似文献   

15.
Enhanced thermoelectric performance of rough silicon nanowires   总被引:1,自引:0,他引:1  
Approximately 90 per cent of the world's power is generated by heat engines that use fossil fuel combustion as a heat source and typically operate at 30-40 per cent efficiency, such that roughly 15 terawatts of heat is lost to the environment. Thermoelectric modules could potentially convert part of this low-grade waste heat to electricity. Their efficiency depends on the thermoelectric figure of merit ZT of their material components, which is a function of the Seebeck coefficient, electrical resistivity, thermal conductivity and absolute temperature. Over the past five decades it has been challenging to increase ZT > 1, since the parameters of ZT are generally interdependent. While nanostructured thermoelectric materials can increase ZT > 1 (refs 2-4), the materials (Bi, Te, Pb, Sb, and Ag) and processes used are not often easy to scale to practically useful dimensions. Here we report the electrochemical synthesis of large-area, wafer-scale arrays of rough Si nanowires that are 20-300 nm in diameter. These nanowires have Seebeck coefficient and electrical resistivity values that are the same as doped bulk Si, but those with diameters of about 50 nm exhibit 100-fold reduction in thermal conductivity, yielding ZT = 0.6 at room temperature. For such nanowires, the lattice contribution to thermal conductivity approaches the amorphous limit for Si, which cannot be explained by current theories. Although bulk Si is a poor thermoelectric material, by greatly reducing thermal conductivity without much affecting the Seebeck coefficient and electrical resistivity, Si nanowire arrays show promise as high-performance, scalable thermoelectric materials.  相似文献   

16.
Thermoelectric materials interconvert thermal gradients and electric fields for power generation or for refrigeration. Thermoelectrics currently find only niche applications because of their limited efficiency, which is measured by the dimensionless parameter ZT-a function of the Seebeck coefficient or thermoelectric power, and of the electrical and thermal conductivities. Maximizing ZT is challenging because optimizing one physical parameter often adversely affects another. Several groups have achieved significant improvements in ZT through multi-component nanostructured thermoelectrics, such as Bi(2)Te(3)/Sb(2)Te(3) thin-film superlattices, or embedded PbSeTe quantum dot superlattices. Here we report efficient thermoelectric performance from the single-component system of silicon nanowires for cross-sectional areas of 10 nm x 20 nm and 20 nm x 20 nm. By varying the nanowire size and impurity doping levels, ZT values representing an approximately 100-fold improvement over bulk Si are achieved over a broad temperature range, including ZT approximately 1 at 200 K. Independent measurements of the Seebeck coefficient, the electrical conductivity and the thermal conductivity, combined with theory, indicate that the improved efficiency originates from phonon effects. These results are expected to apply to other classes of semiconductor nanomaterials.  相似文献   

17.
研究了不同沉积电位对电化学生长半导体热电材料Bi2Te3膜沉积过程、膜形貌、结晶性及相结构的影响。利用I-V循环扫描曲线分别研究了纯Bi3 、纯Te4 及其两种离子的混合溶液电化学特性;应用扫描电子显微镜(SEM)、X射线衍射(XRD)、电子能谱(EDS)对膜的微观表面形貌、相结构及成分进行了表征。研究表明:生长的样品为斜方六面体(rhombohedral)晶体结构的Bi2Te3,薄膜表面平整致密,为明显的柱状晶结构,具有(110)择优取向;沉积电位越接近还原峰最大电流处,膜的生长电荷效率越高,薄膜结晶性也越好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号