首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
对AB-8型大孔树脂分离纯化中药复方免疫增强剂中多糖的工艺条件进行研究,采用苯酚-硫酸法测定大孔树脂对分离纯化多糖的吸附率、解吸率及影响因素。结果显示:最佳工艺条件为上样液药复方多糖的浓度为5.93mg/mL、速率2BV/h、体积2BV,洗脱液乙醇的体积浓度为50%、速率3BV/h、用量3BV。AB-8型大孔树脂的吸附率、解吸率分别达到71.0%、93.1%,所得多糖含量为79.8%,表明AB-8型大孔树脂对中药复方多糖有较好的分离纯化性能。  相似文献   

2.
为探讨甘草渣中多糖的分离纯化条件及抗氧化活性,进行了大孔树脂的选择实验研究,并由大孔树脂动态吸附实验及动态洗脱实验研究确定了HPD-722大孔树脂分离纯化甘草渣多糖的最佳条件,并以维生素C作为对照,对甘草渣多糖清除DPPH自由基和羟基自由基的能力进行了检测。检测与分析结果表明:HPD-722树脂对甘草多糖的吸附率为73.25%,解吸率为86.59%,适合于甘草多糖的纯化;甘草渣多糖最佳分离条件为:上样液甘草多糖浓度4.12 mg/m L、上样量2 BV、上样流速2 BV/h,洗脱剂为50%乙醇,洗脱流速3 BV/h,洗脱剂用量3BV,在最佳条件下甘草多糖的纯度由纯化前的7.64%提高为51.65%;通过抗氧化性实验显示甘草多糖具有较强的抗氧化性,能清除DPPH自由基和羟基自由基,是一种很好的天然抗氧化剂。  相似文献   

3.
为了优选菝葜多糖的分离纯化工艺,以多糖纯度、多糖出膏率与吸附率等为指标,考察醇沉静置温度、醇沉静置时间与大孔吸附树脂型号等因素,确定菝葜多糖的最佳醇沉工艺与大孔吸附树脂纯化工艺。得到菝葜多糖最佳醇沉工艺为取含生药1.0 g/mL的药液,加入乙醇,使乙醇体积分数达到80%,醇沉1次,室温25 ℃静置12 h,抽滤得醇沉物,70 ℃干燥;纯化工艺为采用AB-8型大孔吸附树脂,用1 BV的2.0 mg/mL(以粗多糖计)的上样液,以2 BV/h的流速上样,再用3 BV的纯水以3 BV/h的流速进行洗脱。结果表明该优选工艺稳定可靠,可用于菝葜多糖的分离纯化。  相似文献   

4.
本研究以炮制的干天麻为原料,水提醇沉法提取多糖,大孔吸附树脂纯化,比较了八种大孔树脂(AB-8、D101、LX-17、D301、NKA-9、S-8、LSD-001、ADS-7)对天麻多糖静态吸附-解析效果,筛选出最佳纯化树脂,再研究最佳树脂纯化天麻多糖工艺参数.结果为:八种大孔吸附树脂中D101对天麻多糖的纯化效果最好.样品液浓度、温度、上样速度,洗脱用乙醇浓度、洗脱流速及洗脱体积等因素均对D101树脂吸附分离天麻多糖有影响.所得的最佳纯化工艺为:20℃是较适宜的吸附温度,上样速度1BV/h,上样浓度4mg/mL,进行吸附;吸附饱和平衡后,用解析液浓度60%乙醇,解析速率2BV/h,解析液体积3BV进行动态洗脱.通过该工艺天麻多糖的纯度提高到了65.7%,表明了大孔树脂D101对天麻多糖具有较好的纯化效果.  相似文献   

5.
采用大孔树脂层析法研究地榆多糖分离纯化工艺,确定最佳工艺条件:选择HB-1600作为地榆多糖分离纯化的最佳树脂,上样浓度为0.333 mg/m L,上柱流速为1 BV/h,洗脱流速为1 BV/h.按此条件进行地榆多糖分离纯化,可以使地榆多糖的纯度由31.15%提高到76.50%.由此表明:利用大孔树脂层析法纯化地榆多糖可除去蛋白质等大部分杂质,提高多糖的纯度和品质,为地榆多糖的后续深入研究奠定基础.  相似文献   

6.
以枇杷叶为研究对象,采用大孔吸附树脂对枇杷叶三萜酸的粗提物进行分离纯化。首先对8种大孔树脂进行筛选,然后考察最佳大孔树脂对枇杷叶三萜酸的静态、动态吸附及脱附性能,得到最佳分离纯化的工艺条件:大孔树脂型号为HZ-816,上样流速2 BV/h(1 BV约为32 m L),上样质量浓度0.6 mg/m L,上样体积470 m L,洗脱液乙醇体积分数95%,洗脱流速2 BV/h,洗脱剂的用量为6 BV,由此得到的三萜酸纯度为92.29%。通过比较研究表明大孔树脂分离法优于碱溶酸沉法。  相似文献   

7.
为了探讨大孔吸附树脂纯化鸡血藤中总黄酮的最佳工艺,通过对6种型号大孔树脂的静态实验,筛选出最佳树脂;考察最佳树脂对鸡血藤总黄酮的吸附及洗脱性能,优化工艺参数.结果表明:HZ820为最佳树脂,其纯化总黄酮的优化工艺条件为上样液质量浓度3.31mg/mL,吸附流速4BV/h(1BV为20mL),上样液体积500mL,树脂吸附量达79.31mg/g;以60%乙醇为洗脱剂,洗脱流速3BV/h,洗脱用量5BV,解吸率达92.72%,减压浓缩得鸡血藤总黄酮浸膏,纯度为79.49%.  相似文献   

8.
以树莓干果为原料,通过比较HP-20、D101、X-5、LX-68、AB-8、XDA-6、XDA-8、D201大孔树脂对树莓粗黄酮静态吸附率和解吸率的影响,筛选出适宜分离纯化树莓黄酮的大孔树脂为XDA-6树脂.结合静态与动态吸附解吸实验,得出用XDA-6大孔树脂分离纯化树莓黄酮的最佳工艺.将树莓粗黄酮提取原液作为上样液,以6 BV/h(1 BV为1个柱体积)的流速上样吸附,之后采用60%乙醇作为洗脱剂,以4 BV/h的流速进行洗脱,洗脱剂用量为5 BV.在此纯化条件下所得树莓黄酮质量分数为35.8%,较纯化前提高了1.21倍;干粉质量浓度在0.5 mg/m L时,对DPPH的抗氧化活性从纯化前的62.51%提高到70.36%,对大肠杆菌、金黄色葡萄球菌、棉花枯萎菌、小麦赤霉菌均有一定的抑制作用,纯化后的抑菌效果优于纯化前.  相似文献   

9.
探讨了大孔树脂纯化丹酚酸B的最佳工艺.通过对几种不同类型大孔吸附树脂对丹酚酸B吸附及洗脱性能的考察,筛选出HZ816树脂为最佳纯化树脂并优化了该树脂分离纯化丹酚酸B的工艺参数.实验结果表明:最佳上样质量浓度1.27 mg/mL,吸附流速2 BV/h,上样量31 BV,树脂吸附量可达49.4 mg/g;以乙醇为洗脱剂,丹酚酸B的解吸率为87.7%,纯度为87.9%.HZ816树脂是纯化丹酚酸B的较好材料,优化的分离工艺是可行的.  相似文献   

10.
考察了大孔树脂对紫苏茎提取液中总黄酮的吸附性能,优化了吸附工艺参数。首先对D-101、AB-8、DM130、ADS-7和ADS-17共5种大孔树脂的静态吸附量和解析率进行了实验,选择AB-8为最佳吸附树脂;静态吸附表明,3h内吸附即可达到平衡。还考察了上样速率、上样质量浓度、洗脱液乙醇质量分数和洗脱速率对分离的影响,结果表明优化的条件为:上样速率为1BV/h,上样质量浓度为0.15mg/mL,洗脱液乙醇质量分数为70%,洗脱流速为2BV/h。在此条件下,总黄酮洗脱率为93.56%,总黄酮纯度可提高4.5倍。  相似文献   

11.
用水提醇沉法提取龙胆粗多糖,优化AB-8大孔吸附树脂纯化龙胆多糖的工艺,并研究各因素对AB-8大孔吸附树脂对龙胆多糖的吸附与解析效果,得到龙胆多糖的最佳纯化工艺条件。最佳纯化工艺为:上样浓度为4 mg/m L,上样流速为4 BV/h,上样量为8 BV,解析流速为1 BV/h,解析体积为225 m L,解析液为30%乙醇。经过纯化后多糖纯度从43.94%提高到了78.63%。经过AB-8大孔吸附树脂的提纯,多糖的纯度提高为原来纯度的1.79倍,所以AB-8大孔吸附树脂可用于纯化龙胆多糖。  相似文献   

12.
研究了大孔树脂分离纯化小腊树黄酮的工艺,以及纯化前后对DPPH自由基的清除作用.结果表明:AB-8型树脂是分离纯化黄酮的适宜大孔树脂;AB-8型大孔树脂分离纯化黄酮的最佳工艺条件为:提取物上样量为6BV(以湿树脂体积计),先用水淋洗,再用30%的乙醇洗脱,洗脱剂用量为3.3倍湿树脂体积.纯化后黄酮对DPPH自由基的清除效果要低于纯化前.  相似文献   

13.
通过优化龙胆草多糖的纯化工艺,来研究D101大孔吸附树脂对龙胆草多糖的吸附和解析性质。利用水提醇沉法提取龙胆草多糖,考察了各因素对D101树脂吸附解析龙胆草多糖效果的影响,确定了分离龙胆草多糖的最佳分离条件。最佳纯化工艺为:上样浓度为4 g/L,上样流速为2 BV/h,上样量为6 BV,解析流速为2 BV/h,解析体积为7.5 BV,解析液为30%乙醇。在此优化的条件下,D101树脂对龙胆多糖的吸附和解析效果较好。经过纯化后多糖纯度从35.15%提高到了56.24%,多糖的回收率为78.21%。结果表明该法合理可行,可用于纯化龙胆草多糖的富集研究。  相似文献   

14.
目的:考察8种大孔吸附树脂D3520、H103、HPD-100、HPD-700、AB-8、HPD722、S-8、HPD-600对泽兰多糖的纯化效果,以Box-Behnken法优化最佳大孔吸附树脂的最优纯化工艺.方法:以多糖保留率、脱色率、脱蛋白率的加权综合评分为指标,考察大孔树脂、洗脱流速、上样浓度、洗脱剂用量对纯化结果的影响,通过Box-Behnken设计建立响应面模型来优选大孔树脂泽兰多糖的工艺参数.结果:优选的泽兰多糖的大孔树脂纯化工艺为:取HPD-100大孔吸附树脂,泽兰多糖的上样质量浓度为0.03 g/mL,洗脱流速为1.1 mL/min,洗脱体积为40 mL,以此优选工艺纯化后,多糖保留率69.21%,脱色率60.24%,蛋白脱除率75.67%.结论:泽兰多糖的纯化工艺稳定可靠,HPD-100大孔吸附树脂纯化工艺效果良好,适合工业化生产.  相似文献   

15.
丹参大孔树脂纯化工艺研究   总被引:1,自引:0,他引:1  
以丹酚酸B的洗脱率和吸附率为评价指标,筛选大孔树脂纯化丹参水溶性成分的最佳工艺.结果表明,选用D101型大孔树脂,30 mL树脂可纯化100 mL药液,药液浓度为以生药计100 mg.mL-1,上柱流速为1 BV.h-1,除杂洗脱用水量为2 BV,洗脱剂为50%乙醇,用量为100 mL,洗脱流速为1 BV.h-1.通过大孔吸附树脂纯化后,纯化物中丹酚酸B的质量分数达68%.  相似文献   

16.
利用大孔树脂分离纯化黑米花色苷,得到最佳纯化条件.在最佳提取条件下得到黑米花色苷粗提液,利用AB-8大孔树脂对其进行纯化,研究各个因素对吸附率和解吸率的影响.静态吸附平衡时间为4 h,吸附液pH值为2.0,解吸时间为1.5 h,60%乙醇洗脱效果最佳.动态吸附上样液质量浓度0.5 mg/mL、流速为1.0 mL/min时吸附效果最好,解吸流速为1.0 mL/min、60%乙醇洗脱剂解吸效果最佳.在最佳纯化工艺条件下纯化后的花色苷质量比提高了大约7倍左右,说明AB-8大孔树脂对黑米花色苷具有较好的分离纯化效果.  相似文献   

17.
利用AB-8大孔树脂纯化芫荽黄酮,通过静态和动态结合的方法,确定最佳工艺参数.结果表明,静态,吸附平衡时间为3 h,解析平衡时间为1.5 h;动态,上样液质量浓度为1.0 mg/mL,上样液pH值为6.0,上样流速为2 mL/min,洗脱剂质量浓度为70%乙醇溶液,洗脱流速为2 mL/min.在此条件下,AB-8大孔树脂可以较好的分离纯化芫荽中总黄酮.  相似文献   

18.
以雪樱子为原料,优化雪樱子粗多糖水提醇沉提取法及AB-8型树脂纯化工艺。并以维生素C作为对比,以羟自由基清除能力、超氧阴离子自由基清除能力、DPPH自由基清除能力作为指标,对雪樱子粗多糖进行了体外抗氧化活性的测定。结果表明,雪樱子粗多糖的优化提取工艺为:醇沉乙醇体积分数80%、料液比(g/mL)1∶20、提取温度95℃、提取时间6h,粗多糖得率为(1.421±0.081)mg/g。雪樱子多糖优化纯化工艺为:上样液质量浓度1.00mg/mL,上样液pH值5,吸附速率2BV/h,乙醇洗脱剂体积分数25%,洗脱速率2BV/h,回收率为44.99%±1.23%。雪樱子粗多糖具有较好的体外抗氧化活性。研究结果为雪樱子多糖活性分析和功能性产品开发提供了技术支持。  相似文献   

19.
目的研究大孔树脂分离纯化塞北紫堇总生物碱的工艺条件.方法以盐酸小檗碱为对照品,采用酸性染料比色法,分别考察总生物碱在5种类型的大孔树脂(AB-8、NKA-9、LKY131、HP20、PHD400A)上的吸附和解吸附行为,同时分析了上样液浓度、洗脱液浓度和洗脱量、洗脱流速等参数对分离的影响.结果所比较的5种树脂中,AB-8型大孔树脂对总生物碱分离纯化效果最好,富集能力强,较优富集工艺为:2.0mg/ml上样液浓度、9倍量70%浓度的乙醇溶液洗脱、洗脱流速为2.0ml/min,最大吸附量为160mg/g.结论使用AB-8型大孔树脂对塞北紫堇总生物碱具有较好的纯化作用,可使其纯度提高16.6%.  相似文献   

20.
选择8种大孔吸附树脂,比较其对莲房黄酮的吸附和解吸附效果。在静态吸附试验的基础上,筛选出AB-8树脂进行动态吸附试验。实验结果表明,大孔吸附树脂AB-8对莲房黄酮的最佳层析条件为:样液总黄酮液浓度为1.5mg.mL-1,上样流速3BV/h,调节样液pH为3.5上样,以70%的乙醇浓度洗脱,洗脱流速2BV/h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号