首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
设Ω是RN(N≥5)中的有界光滑区域,0∈Ω,0≤s<4,2*(s):=2(N-s)/N-4是临界Sobolev-Hardy指数,f(x)是一个给定的函数.利用变分原理,证明了当f(x),λ,μ满足一定条件时,带有Dirichlet边值条件的奇异临界非齐次问题△2u-μu|x|4=|u|2*(s)-2/|x|su λu f(x)解的存在性.  相似文献   

2.
本文研究了一类含有临界Sobolev-Hardy项的四阶奇异椭圆方程问题△2u=μ |u|2**(s)-2u/|x|s +λf(x,u),x∈Ω,u∈H2,2(Ω),N(>)5.利用变分方法和集中紧性原理,证明了该四阶奇异椭圆方程问题无穷多小解的存在性.  相似文献   

3.
本文考虑了下述线性双调和方程△^2u-a(x)u=f(x)在Ω中,u∈H^2(Ω),其中Ω包含R^N,N>4,对于一类函数a(x),f(x),采用差分方法给出了弱解的内部正则性结果,其结论亦适合于一些非线性双调和方程。  相似文献   

4.
设Ω是R∧R中的界区域,n≥3,给出了半线性椭圆方程边值问题{-△u=Q(x)u|u|∧4/(n-2) f(x,u) x∈Ωu=0 x∈ЭΩ正解存在的一个充分条件,推广了文献∧[1-3]的相应结果。  相似文献   

5.
考虑了半线性椭圆型方程-△ u -μ u|x|2 =u2 * - 1 +σf ( x) ,  u∈ H0 1 (Ω ) ,u >0 ,N >2 .这里 ,0∈Ω,Ω RN是一个光滑有界区域 ,σ>0是一个参数 ,μ <μ=( N -2 ) 2 /4 ,f ( x)是 L∞ (Ω)中一个给定的函数 ,并且 f ( x) 0 ,f ( x) 0 .利用隐函数定理及上下解方法 ,我们得到了一定条件下 ,方程极小正解的存在性 .  相似文献   

6.
讨论了RN中有界域Ω上临界增长拟线性椭圆方程-△pu=f(x,u),x∈Ω的Dirichlet问题的非平凡解,其中f(x,u)=)O(|u|q-2u)(u→∞),Ⅳ>p≥2.利用没有(PS)条件的山路引理,得到该问题非平凡解的存在性结果.  相似文献   

7.
证明了若线性椭圆型问题-△u = k(x),u 〉 0, x ∈Ω, u │аΩ = 0存在解v ∈ C^2+α(Ω) ∩ C(Ω ̄),则半线性椭圆型问题-△u = k(x)g(u),u〉0,x∈ Ω, u │аΩ = 0存在解u∈C^2+α(Ω) ∩ C(Ω ̄).这里,Ω是R^N中的有界光滑区域,k∈C^α(Ω)非负、非平凡,g∈C^1((0,∞),(0,∞)),g在(0,∞)有上界且lin s→0+ g(s)=∞.  相似文献   

8.
应用山路引理及集中紧性引理研究方程-Δpu+V(x)︱u︱p-2u=μ︱u︱p*-2u+λP(x)︱u︱q-2u,x∈Ω,u︱Ω=0,pqp*非平凡解的存在性,推广了关于问题-Δu=︱u︱2*-2u+λ︱u︱q-2u,u∈H01(Ω)非平凡解的存在性的结果.  相似文献   

9.
文章主要在有界域Ω中研究了如下含多奇性的半线形椭圆型问题{△2u=k∑i=1λiu/|x-ai|4 u2*-1,x∈Ω u=(б)u/(б)v=0,x∈(б)Ω u>0,x∈Ω\{a1,…,an}其中N≥5,k∈N,(λ1,λ2,…,λk)∈Rk,(a1,a2,…,ak)∈RkN且2*=2N(-)N-4是临界的嵌入指数,由于Sobolev嵌入失去紧性,所以文章将通过集中紧原理得到正解的存在性.  相似文献   

10.
通过隐函数定理及上下解方法讨论了问题-△u-μu/|x|2=u2*-1 λu σf(x),u>0在Ω内,u|(a)Ω=0,N≥3在一定条件下极小正解的存在性.其中Ω是RN中包含0的有界光滑区域,λ∈R1,μ<(-μ)=(N-2/2)2,2*=2N/N-2是临界Sobolev指标,σ≥0是一个实参数,f(x)是一个给定的非负函数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号