首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
紧急避让路径跟踪自抗扰控制   总被引:1,自引:1,他引:0  
自动紧急避让作为一种辅助驾驶系统,能够提高汽车行驶的安全性.为了提高不同质量参数、不同轴距车辆路径跟踪性能,以二自由度车辆模型为基础,设计二阶自抗扰控制器.车辆模型参数变化可以通过三阶扩张状态观测器进行观测和补偿.针对避让过程存在侧向加速度过大或产生阶跃、曲率不连续问题,引入三次B样条曲线对避让路径进行再规划.采用软件Carsim与Simulink联合仿真方法进行控制器性能验证.仿真结果表明,基于自抗扰方法设计的紧急避让路径跟踪控制器能够保证不同车型车辆很好地跟踪规划的轨迹,保证车辆稳定性.  相似文献   

2.
针对车辆的非线性非完整约束特性导致的自动泊车路径跟踪实时控制精度不高,致使库内调整次数增加或车辆最终停放位姿不理想等问题,提出一种基于非光滑控制的自动泊车路径跟踪控制策略.通过对车辆动力学跟踪误差模型的降阶转换,推导了2阶、3阶子系统的级联系统有限时间跟踪控制方程.基于此降阶控制方程,以车辆动力学模型中的方向盘转角和车速作为输入,设计具有全局渐近稳定特性的路径跟踪控制器,并进行了仿真分析.结果表明:与传统方法相比基于非光滑控制的路径跟踪控制方法达到了有限时间内全局精确跟踪参考泊车路径的目的,具有强抗扰动性和快速收敛性.  相似文献   

3.
为了实现装备驾驶机器人车辆的路径及速度跟踪控制,提出了1种基于模糊免疫比例积分微分(PID)的控制方法。通过比较车辆实际行驶路径与期望路径的侧向偏差,模糊免疫比例路径跟踪控制器控制转向机械手操纵方向盘。通过计算期望车速与实际车速的偏差,模糊免疫PID速度跟踪控制器控制制动/油门机械腿分别操纵制动/油门踏板。通过引入车速反馈不断更新汽车的侧向加速度增益,实现了车辆转向控制与纵向车速控制的解耦。Carsim/Simulink软件的联合仿真结果显示,车辆路径跟踪和车速跟踪的最大误差分别为0.28 m和1 km/h。  相似文献   

4.
智能车路径跟踪控制受到车辆参数摄动、场景多变等干扰,影响路径跟踪精确性,甚至引起控制系统不稳定.本文设计了考虑不确定性的二阶超螺旋滑模鲁棒控制算法,证明了控制系统的收敛性,并针对干扰问题设计了前馈补偿控制器以进一步提升控制系统的精确性.通过Carsim-Simulink联合仿真环境下的双移线、正弦路径跟踪控制,以及参数摄动情况下的路径跟踪控制,与传统一阶滑模控制对比,验证了所设计的超螺旋滑模控制器路径跟踪的精确性及鲁棒性.结果表明,面对智能车辆参数不确定、驾驶场景多变等情况,采用超螺旋滑模算法比传统滑模算法具有更好的鲁棒性和跟踪精度,超螺旋算法能有效地减弱传统滑模算法产生的方向盘抖振问题.最后,利用实车平台对进行了低速大曲率场景测试,验证所设计的超螺旋滑模算法控制器具有良好的路径跟踪精度.  相似文献   

5.
针对智能网联车队行驶过程中车辆跟驰和路径跟踪的横纵向协同控制,建立三自由度车辆动力学模型并将其作为控制系统,基于改进的智能驾驶员模型模型设计分层式纵向控制器;基于预瞄-跟随理论设计横向控制器.考虑车辆纵向、横向运动的耦合特性,以纵向速度作为横向控制器的状态变量设计横纵向协同控制策略,在CarSim/Simulink仿真平台搭建车队横纵向协同控制器.采用单移线、隧道工况验证控制器的横向、纵向控制性能;考虑道路弯道、坡度和超高等道路几何设计,设置匝道工况验证控制器横纵向协同控制性能并分析道路超高对车辆跟驰和路径跟踪精度及稳定性的影响.结果 表明:控制器能实现给定工况下车辆速度与转向的跟踪控制,且具有较高的跟踪精度,良好的跟驰效果和行驶稳定性;对于弯道行驶,设置道路超高能使车辆转向平稳,速度跟随精度高且行车间距增加,有利于提高车队行驶安全性.  相似文献   

6.
提出一种基于模型预测控制的分层路径跟踪控制器进行主动转向和差动制动控制.由预测监控状态模块、上层控制器和下层执行器组成.预测监控状态模块利用车辆动力学模型预测车辆未来状态;上层控制器计算期望的前轮转角和轮胎制动力;底层执行器执行前轮转角和制动压力.通过Matlab与Carsim的联合仿真,结果显示,提出的控制器在高速紧急避障中的路径跟踪效果比预瞄驾驶员模型更好.  相似文献   

7.
为提高极限工况下自动驾驶车辆的路径跟踪精度并维持车辆行驶稳定性,设计了一种基于线性模型预测控制的路径跟踪转向控制器.该控制器以速度矢量方向角偏差作为控制参考量,在计算过程中以理想质心侧偏角代替实际质心侧偏角,以提高跟踪精度;采用前轮侧向力为控制输入量,并应用仿射近似方法对后轮侧向力进行线性化处理,以减小计算负担.CarSim与Matlab/Simulink的联合仿真结果表明,该控制器能够在轮胎处于附着极限的情况下维持车辆稳定行驶,且跟踪精度较传统控制器有明显的提高.  相似文献   

8.
针对无人车轨迹跟踪问题,提出了一种基于状态估计的无人车前轮转角和横摆稳定协调控制策略.建立了车辆轨迹跟踪模型,利用模型预测控制算法设计了轨迹跟踪控制器,得到实时跟踪参考轨迹所需的前轮转角.根据车辆模型设计了一种基于未知输入观测器的前轮转角估计方法,并将估计结果作为前轮转角跟踪控制的输入量.基于非奇异终端滑模控制设计了前轮转角跟踪方法,通过转向电机扭矩来控制车辆转向以实现轨迹跟踪.同时,设计了车辆横摆稳定控制器,通过控制横摆角速度跟踪误差确保车辆横摆稳定.建立了CarSim-Simulink联合仿真模型并进行仿真实测试.结果表明,未知输入观测器具有较好的前轮转角估计效果,从而为车辆协调控制提供可靠信息源,协调控制策略能够在保证车辆横摆稳定性的同时完成车辆轨迹跟踪.   相似文献   

9.
自主车辆线性时变模型预测路径跟踪控制   总被引:7,自引:0,他引:7  
为提高自主车辆路径跟踪控制的实时性和鲁棒性,研究一种线性时变模型预测路径跟踪控制方法.建立用于控制器仿真验证的纵向侧向二维车辆非线性动力学模型;从二轮三自由度模型出发,推导出线性时变路径跟踪预测模型;引入向量松弛因子解决优化求解过程中硬约束导致的控制算法非可行解问题,基于模型预测控制理论将路径跟踪控制算法转化为带软约束的在线二次规划问题;最后通过Matlab/Simulink实现车辆动力学建模和控制器设计,双移线工况仿真结果表明,所设计的控制器能够适应不同车速、不同设计参数的鲁棒性要求.  相似文献   

10.
基于Hamilton理论的无人车路径跟踪控制   总被引:1,自引:0,他引:1  
针对当前车辆路径跟踪控制存在精度低、可靠性差的问题,基于Hamilton理论提出一种四轮驱动四轮转向无人车路径跟踪分层控制方法.通过集成车辆动力学模型和路径跟踪模型,建立了路径跟踪误差模型,结合系统控制目标,提出采用Hamilton理论设计车辆上层控制器,用于实现路径跟踪误差模型的镇定,从而提高车辆路径跟踪的精度与鲁棒性.同时,在下层控制器中,设计4个车轮纵向轮胎力分配算法,通过轮胎力的动态分配满足车辆上层控制需求.利用CarSim和Simulink搭建车辆路径跟踪联合仿真模型并进行仿真实验,仿真结果表明,提出的无人车路径跟踪分层控制策略能够通过前后轮转角以及4个轮胎力的实时控制与分配,抑制路径跟踪过程中的横向误差和航向误差,提高路径跟踪精度并确保控制系统的可靠性.   相似文献   

11.
目的 针对线控四轮转向汽车横向稳定性不足及控制鲁棒性差等问题,提出一种主动转向反馈控制策略。方法 使用Simulink搭建线控转向系统转向执行机构动力学模型,将MATLAB/Simulink与Carsim联合仿真,建立线控四轮转向整车模型;基于二自由度模型分析横摆角速度和质心侧偏角对汽车稳定性的影响,推导理想的横摆角速度和质心侧偏角;以横摆角速度增益恒定为依据设计理想传动比,得到期望前轮转角,以横摆角速度误差为控制量设计模糊控制器得到附加前轮转角对期望转角实时修正,实现前轮主动转向;针对横摆角速度和质心侧偏角与理想值之间的误差,加权得到稳定性控制目标;设计自适应积分滑模反馈控制策略输出后轮转角,对理想值进行跟踪,实现后轮主动转向。结果 仿真实验结果表明:所搭建的线控转向系统能够准确反映汽车动力学特性。相比无控制的机械前轮转向汽车与横摆反馈控制的四轮转向汽车,线控主动四轮转向汽车在双移线工况下将质心侧偏角控制在0值附近波动,横摆角速度跟踪误差控制在1.149 deg/s以内;在角阶跃工况下将质心侧偏角稳态值控制在0.065 deg,横摆角速度稳态值误差为0.074 deg/s。结论 线控...  相似文献   

12.
针对汽车的自动车道保持系统,研究了基于模型预测控制(MPC)的转向控制策略.对车辆的侧向动力学和轮胎的侧偏特性进行分析,研究了以位移偏差、横摆角偏差和两者微分项为状态变量、前轮转向角为控制输入的侧向动力学模型;在该模型的基础上,建立了车道自动保持控制的优化性能指标和系统约束,引入了平滑的期望参考轨迹,设计了基于MPC的转向控制策略.仿真试验证明,在不同车速下,该控制策略均能迅速消除侧向位移偏差和横摆角偏差,保证车辆沿着车道中心线行驶,并有效平滑系统的动态响应,具有较好的适应性和鲁棒性.  相似文献   

13.
针对线控四轮主动转向车辆受侧向干扰和变道行驶时存在的操纵稳定性问题,基于单点预瞄驾驶员模型、三自由度整车动力学模型和改进型滑模四轮转向(4WS)控制算法,建立了4WS整车驾驶系统,并设计了双移线行驶工况对其进行实验测试.在Matlab/Simulink软件中对该整车驾驶系统进行建模仿真,并与相同参数的经典型滑模控制的4WS车辆和无控制前轮转向(FWS)车辆模型仿真结果对比.结果表明:设计的改进型滑模控制器可以有效地实现双移线行驶工况,追踪理想横摆角速度,使质心侧偏角、车身侧倾角和侧倾角速度保持一个相对较小的值,并且对侧向干扰具有很强的鲁棒性.   相似文献   

14.
针对变化速度下车辆轨迹跟踪精度以及实时性差的问题,提出一种基于模型预测控制的横纵耦合控制方法。在三自由度车辆动力学模型中,将车轮驱动力与前轮转角作为控制量,以单控制器形式实现车辆横纵向运动的综合控制,并且在考虑耦合特性的基础上,设计目标函数与可变权重系数,求解最优横纵向控制量。并且基于五次多项式理论,设计一种变速双移线轨迹以验证控制器综合轨迹跟踪能力。实验结果表明,该控制器能有效跟踪变化车速并且保持高轨迹跟踪精度与良好的实时性。  相似文献   

15.
为进一步提高分布式驱动电动汽车行驶过程中的稳定性,提出主动前轮转向(AFS)和直接横摆力矩控制(DYC)协调控制策略.为提高车辆稳态行驶时转向能力,设计基于滑模控制(SMC)的前轮主动转向控制器实时修正前轮转角;以维持车辆工作在稳态工作区为控制目标,设计基于模型预测控制(MPC)的车辆稳定性控制器,通过设定的分配规则按轴荷比等比例分配各轮驱/制动力矩.利用相平面法作为判定依据自适应分配各控制器权重,实现控制器之间的切换.在连续转向工况下,对控制算法进行仿真验证.结果表明:在相同转角输入下,相较于无控车辆,受控状态下车辆的横摆稳定性能提高了16%,行驶状态得到了改善.  相似文献   

16.
针对四轮独立转向电动汽车转向系统成本高、但功能开发程度低的问题,提出一种车辆斜向行驶控制策略,优化四轮独立转向电动汽车换道过程中的行驶稳定性. 基于四轮独立转向电动汽车横向、纵向二自由度车辆模型,提出一种横纵向耦合轨迹跟踪控制方法,该方法基于线性时变模型采用模型预测控制(MPC)算法,对横向偏差、航向角偏差及纵向速度偏差进行闭环控制. 设计车辆稳定性控制器,包括横摆力矩控制器和转矩分配控制器,同时提高车辆轨迹跟踪精度和行驶稳定性. 最后搭建Simulink/Carsim/Prescan联合仿真平台,对四轮独立转向电动汽车双移线工况进行模拟换道仿真,仿真结果证明了斜向变道的可行性和横纵向耦合轨迹跟踪控制方法的有效性.   相似文献   

17.
利用AMESim软件建立了XCMG170烛式悬架矿用汽车全液压转向系统的仿真模型,并验证了所建立的模型的正确性.通过AMESim和ADAMS软件的联合仿真模拟,进行了整车的稳态回转试验、双移线仿真试验和转向盘转角输入试验.通过改变前桥的初始定位参数,分别仿真分析整车的操纵性能,得到了表征整车操纵稳定性的横摆角速度、侧向加速度和车身侧倾角的曲线变化情况.结果表明,前束值增大使得烛式悬架整车的转向回正性能和行驶稳定性能变差,本仿真模型可为同类矿用汽车的选型及改进设计提供参考依据.  相似文献   

18.
基于Simulink的四轮转向汽车神经网络控制策略仿真   总被引:1,自引:0,他引:1  
针对汽车小转角时质心侧偏角为零,高速大转角时前轴抗侧滑的控制目标,提出一种四轮转向汽车控制策略.在Simulink环境下建立包含轮胎非线性和计及侧倾的三自由度四轮转向汽车模型,运用双隐含层BP神经网络训练得到四轮转向控制器.仿真结果表明,神经网络控制器可有效控制高速时汽车前轴滑动的趋势,并在低速到高速时使汽车质心侧偏角基本为零,控制误差低于比例转角控制策略和横摆角速度反馈控制策略.同时高速时横摆角速度响应与前轮转向汽车接近,汽车的侧向加速度和车身侧倾角稳态值比前轮转向有所降低.  相似文献   

19.
针对汽车主动前轮转向子系统和直接横摆力矩控制子系统的集成控制问题,基于快速终端滑模控制理论设计一种标定参数少和动态响应速度快的鲁棒集成控制器.首先,基于达朗贝尔原理建立包含车身侧向和横摆运动自由度的汽车动力学模型作为底盘集成控制模型.随后,基于快速终端滑模控制理论分别设计主动前轮转向控制律和直接横摆力矩控制律,并且通过汽车质心侧偏角相平面定义的平滑切换因子建立二者的切换规则,实现主动前轮转向子系统和直接横摆力矩控制子系统的平滑切换控制,并且将主动前轮转向子系统和直接横摆力矩控制子系统的主要工作区域分别控制在轮胎的线性区域和非线性区域.最后,结合车辆动力学仿真软件对所提出的鲁棒集成控制器的可行性和有效性进行验证,结果表明:所提出的底盘集成控制器可以同时兼顾汽车操纵稳定性和乘坐舒适性.  相似文献   

20.
向后轮随动转向系统中引入一种黏弹性参数可变的黏弹性材料,以替代传统的橡胶衬套;基于黏弹性材料的分数阶本构模型,以及具有饱和特性的非线性魔术轮胎模型,建立了随动转向车辆的三自由度分数阶动力学模型;根据给定的车辆参数,利用MATLAB软件仿真研究了随动转向车辆的横向动力学行为。研究结果表明:在一定的参数条件下,随着车速的提高,后轮随动转向角发生了Hopf分岔现象;当车辆的行驶速度超过某个阈值时,随动转向车辆将发生明显的摆振,后轮随动转向角和车辆横摆角速度时间历程曲线均呈现出具有两个稳定幅值的周期振动,随动转向角相图上出现了两个极限环;后悬架中引入的黏弹性材料参数对随动转向车辆的非线性动力学行为具有明显的影响。该研究为后轮转向车辆横向动力学行为的半主动控制奠定了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号