首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
为完善薄壁箱梁剪力滞效应研究,构造余弦函数作为剪力滞效应下纵向翘曲位移分布形态的描述,考虑弯曲剪力流分布对薄壁箱梁弯曲曲率和顶底板纵向翘曲位移的影响,引入顶板悬臂板纵向翘曲位移差函数修正系数及内力平衡因子,基于能量变分法,推导了薄壁箱梁剪力滞效应作用下应力与挠度计算微分方程.针对单箱单室简支箱梁和连续箱梁算例,将理论分析方法得到的应力和挠度计算值与有限元结果和实测值进行对比分析.结果表明,按理论分析方法得到的薄壁箱梁纵向应力值不仅与有限元结果、实测值吻合良好,而且能真实地反映顶板悬臂板应力分布形态.集中荷载和均布荷载作用下,考虑剪力滞效应影响的方法使得薄壁简支箱梁跨中挠度分别增加了25. 34%和19. 22%,与有限元结果的误差分别为1. 31%和1. 83%,精度较高.该理论分析方法可以准确预测薄壁箱梁在任意荷载作用下的截面应力与挠度分布.  相似文献   

2.
为了揭示梁端约束条件对箱形梁剪力滞效应的影响,选取剪力滞效应引起的附加挠度为广义位移,在箱形梁横截面上引入3个翘曲位移修正系数,运用能量变分法建立了关于附加挠度的控制微分方程及边界条件,导出了均布荷载作用下相应于不同梁端约束条件的箱形梁剪力滞系数和附加挠度解析解.结合数值算例,详细分析了梁端约束条件对剪力滞系数和附加挠度的影响.研究结果表明:该研究计算结果与有限元计算结果吻合良好;梁端约束程度越强,剪力滞系数横、纵向分布曲线越陡峭,剪力滞附加挠度纵向分布曲线越平缓;正、负弯矩区的剪力滞系数纵向分布规律与相应的简支箱梁和悬臂箱梁类似;与简支箱梁相比,一端固定另一端简支的箱梁和两端固定的箱梁跨中截面顶板与腹板交汇处的剪力滞系数分别增大了12.86%和25.63%,跨中截面的剪力滞附加挠度分别减小了13.79%和25.60%.  相似文献   

3.
为了更加客观地反映箱形梁剪力滞翘曲应力分布,借助有限元软件建立箱形梁实体模型,计算并绘制横截面翘曲应力分布图.在此基础上,重新定义了箱形梁各板的翘曲位移模式,同时引入反映翘曲应力自平衡和悬臂板边界约束影响的修正系数.选取剪力滞效应引起的附加挠度为广义位移,应用能量变分法建立了以附加挠度为未知量的控制微分方程及边界条件,并导出了简支箱梁和两跨连续箱梁剪力滞附加挠度和翘曲应力的解析解.通过简支箱梁和连续箱梁算例,结合空间有限元翘曲应力计算结果确定边界约束修正系数可采用1.4.算例表明,本文方法计算结果与有限元数值解吻合良好.  相似文献   

4.
基于单室箱梁翼缘板选取最大剪切位移差函数为广义剪力滞位移函数,通过假定箱梁竖向变形由腹板剪切变形与翼板剪滞效应引起的位移,利用变形协调条件和能量变分法最小势能原理推导了特定边界和荷载条件下考虑剪切变形的单室箱梁的挠曲位移表达式。利用推导的挠曲微分方程计算了单室简支箱梁承受均布荷载作用下的挠度,对靠近梁端部采用挠度修正系数线性内插求解竖向变形,建立单室简支箱有限元分析模型;对比解析解和数值解。结果表明:剪切变形对简支单室箱梁承受均布荷载作用的挠度具有一定的影响;利用推导的公式能够快速、有效地计算简支单室箱梁承受均布荷载下剪切与剪滞双重效应的挠度;跨中挠度与数值解差6%,吻合良好。  相似文献   

5.
文章针对相关研究中剪力滞翘曲位移函数物理意义不明确的问题,分析了剪力滞效应引起的箱梁附加挠度以研究箱梁剪力滞效应;将箱梁挠度分为按初等梁计算的挠度与附加挠度2个部分,利用新的箱梁纵向位移函数,通过箱梁的总势能泛函,推导出关于附加挠度和初等梁挠度的微分方程;在将初等梁挠度与附加挠度分离的基础上,建立箱梁的一维离散有限元模型,对比研究了不同剪力滞翘曲位移函数和不同附加挠度形函数对计算结果的影响;提出用总挠度二阶导数和初等梁挠度二阶导数的比值作为剪力滞效应的评价指标,该指标能较真实地反映箱梁的剪力滞效应,且与实体模型截面应力不均匀程度变化规律一致;最后,为了反映在移动荷载下箱梁的应力分布,提出用箱梁的应力包络来评价箱梁的剪力滞效应,这种方法更直观,且容易被工程师所接受。  相似文献   

6.
为了揭示翼板横向位移对箱梁剪力滞效应的影响,在箱梁全截面上引入能充分反映剪力滞翘曲特性的中性轴修正系数,选取剪力滞效应引起的附加挠度为广义位移,从翼板剪切变形与附加挠度的几何关系入手,定义了箱梁的翼板横向位移模式,运用能量变分法建立了考虑翼板横向位移影响的箱梁剪力滞效应解析理论.简支和连续箱梁算例分析表明:考虑翼板横向...  相似文献   

7.
以薄壁箱梁的弯曲理论为基础,从分析微板剪力流出发,结合弹性理论中求解平面应力问题的假设,推导考虑薄壁箱梁各板面内剪切效应时的弯曲纵向位移函数,同时从理论上导出剪力滞翘曲位移函数。运用能量变分原理及铁木辛柯深梁理论的假设简化并求解考虑各板面内剪切效应的纵向位移函数,并给出数值算例。研究结果表明:按本文推导的考虑各板面内剪切效应的位移函数计算的简支梁跨中截面正应力与实测值及有限元值吻合良好,剪应力与挠度较以往方式求解的结果更为准确,且箱梁挠度及腹板剪应力计算值相对于初等梁的结果均有明显增加,最大增量达到21%。  相似文献   

8.
利用多项式建立箱型梁剪力滞效应分析的一维离散有限元模型,通过箱型梁翼缘板的纵向转角位移差函数建立附加弯矩和附加挠度计算公式,计算分析宽高比、宽跨比、高跨比等因子对箱型梁截面的附加弯矩和附加挠度的影响。结果表明,利用一维离散有限元法计算分析箱型梁附加弯矩和挠度的精度较高,结果可靠。箱型梁宽跨比或宽高比增大时,剪力滞效应所产生的附加弯矩对箱型梁的影响随之增大。箱型梁翼缘宽度对附加弯矩和附加挠度的影响较大,而箱型梁高度能够显著提高箱梁截面的抗弯刚度。  相似文献   

9.
基于Timoshenko梁理论和能量变分原理,对单箱单室混凝土薄壁箱梁的翘曲位移函数进行修正,合理构造考虑各翼板翘曲位移函数幅值关系、横截面轴力平衡以及剪切变形影响的翘曲位移函数,建立了体系总势能函数表达式.利用Euler-Lagrange方程得到了薄壁箱梁剪力滞效应计算理论的微分方程,推导了考虑剪力滞效应影响的简支梁挠度计算公式.结合ABAQUS有限元数值模型算例,对比分析了简支梁在不同荷载工况下挠度沿梁轴向的分布规律.结果表明:针对不同荷载工况下的单箱单室薄壁简支箱梁,文中提出的挠度计算公式的结果与ABAQUS有限元数值吻合较好.同时选取目前工程应用较为广泛的一般梁挠度简化计算方法进行对比分析.由于此类简化计算方法忽略了剪力滞效应存在而产生的附加挠度,导致误差较大,最高达到32.06%,误差范围为21.39%~32.06%.文中所提出的挠度计算方法的结果与有限元数值模拟的结果吻合良好,能较好地反映结构在外荷载作用下的变形规律,且不受加载工况影响,从而验证了文中挠度计算方法的正确性及适用性.  相似文献   

10.
用多参数翘曲位移函数考虑箱梁截面底板、顶板、悬臂板剪滞翘曲幅度一般各不相同的影响,计入箱梁剪切变形,导出了箱梁剪滞效应分析的控制微分方程组、边界条件及相应的闭合解。给出了算例结果,表明此方法用于求解薄壁宽箱梁的应力和挠度能大幅度提高计算精度。此方法蜕化后可广泛用于多种常见桥梁结构剪力滞效应的高精度分析。  相似文献   

11.
大跨径预应力混凝土箱梁的剪切变形分析   总被引:2,自引:0,他引:2  
为分析剪切变形对预应力混凝土箱梁挠度的影响,依据经典Timoshenko梁理论,参照已建大跨预应力混凝土箱梁的截面尺寸,简化选取等截面悬臂箱梁为分析对象建立了空间有限元模型.按不考虑剪切变形和考虑剪切变形两种情况计算了箱梁的挠度,分析了剪切变形的影响随箱梁高跨比的变化,并讨论了传统观点中的考虑剪切变形的高跨比门槛值在大跨径预应力混凝土箱梁挠度计算中的适用性.然后,建立了虎门大桥辅航道桥的施工阶段分析模型,模拟箱梁的实际悬臂施工过程,分析了剪切变形对箱梁挠度的影响规律,计算并探讨了箱梁的长期徐变挠度,进而推算了箱梁的剪切徐变挠度.分析结果表明,剪切徐变是造成箱梁持续下挠的原因之一.  相似文献   

12.
针对目前规范中缺少有关波形钢腹板组合连续梁桥有效翼缘宽度的相关规定,提出一种翼缘有效宽度计算方法,以某大跨度波形钢腹板预应力混凝土组合连续箱梁桥为背景,对其有效翼缘宽度计算进行初步研究,研究结果表明:在自重和集中荷载作用下,跨中混凝上内衬边缘的剪力滞效应显著,翼缘板的有效翼缘宽度系数分别达到0.87和0.7左右,其它部位剪力滞效应不明显;而预应力荷载作用下,波形钢腹板组合连续箱梁的各截面处的剪力滞效应均不明显,可以忽略不计,最后通过有限元计算结果与国内外规范对比发现,波形钢腹板箱梁跨中部分有效翼缘宽度与混凝土箱梁基本一致,设计计算时可参照普通混凝土箱梁;内衬边缘截面的剪力滞效应介于普通混凝土箱梁与钢箱梁之间,其有效翼缘宽度的计算也应介于二者之间。  相似文献   

13.
湛江海湾大桥主桥是一主跨为480m的双塔空间双索面混合梁斜拉桥,钢主梁采用扁平空腹流线型钢箱梁,标准梁段横隔板和纵隔板均为桁架式.在悬臂拼装施工过程中,吊机作用梁段与被吊梁段受力不同,在两段梁的接口处存在较大的变形差异.文中采用混合单元建立被吊梁段与吊机作用梁段的三维有限元模型,分析了悬臂拼装阶段钢箱梁拼接口的相对变形,研究了纵横隔桁架刚度等参数对变形的影响.分析表明,大跨度斜拉桥采用全空腹钢箱是可行的,相对变形的大小取决于箱梁的整体刚度和吊机的横向着力点.  相似文献   

14.
剪切变形使得箱梁的翼板中出现应力不均匀现象。本文以最小势能原理为基础,建立薄壁箱梁翘曲剪力滞的控制微分方程,推导并讨论了集中荷载、均布荷载对简支单箱单室箱梁剪力滞的影响。总结出考虑剪力滞效应后弯曲法向应力的变化规律,对集中、均布荷载作用下的影响进行分析并得出了一些结论。  相似文献   

15.
为研究滑移和剪切变形对部分充填式钢箱-混凝土组合梁变形影响,基于Timoshenk两广义位移理论和能量变分原理,提出组合梁变分计算模型和假定.利用最小势能原理并结合边界条件,分别推导考虑双重变形模式的简支组合钢箱梁负弯矩区滑移微分方程、挠度及附加弯矩的联合弹性解析解.对比两根不同抗剪连接程度组合梁的实测值及理论公式计算值,分析结果表明:在弹性阶段运用变分法推导的挠度及其滑移计算值与实测值相吻合,从而证明了理论公式的有效性.  相似文献   

16.
进行波形钢腹板-混凝土组合箱梁和平钢腹板-混凝土组合箱梁的模型试验.提出模拟钢腹板-混凝土组合结构的有限元方法,并在大型通用程序ANSYS中实现.有限元计算结果得到了模型梁试验结果的验证,可用于钢腹板-混凝土组合结构的数值分析.试验与数值分析结果表明,两种组合箱梁的总体受力在弹性阶段和弹塑性阶段相似.相对于平钢腹板-混凝土组合箱梁,波形钢腹板-混凝土组合箱梁由于波形钢腹板的折迭效应,其抗变形能力和抗裂性能较相对较弱,但抗剪性能和抗屈曲能力较好.在破坏模式上,波形钢腹板-混凝土组合箱梁属于整体破坏,平钢腹板-混凝土组合箱梁属于平钢腹板局部屈曲破坏,其极限承载力小于波形钢腹板-混凝土组合箱梁.平钢腹板刚度小,在实际工程应用过程中应进行加劲,以防止局部屈曲破坏早于整体破坏的发生,同时也有利于避免施工过程的局部变形.  相似文献   

17.
以荆岳长江公路大桥为研究背景,采用ANSYS软件建立了该斜拉桥主梁最大单悬臂、主梁最大双悬臂和悬臂施工2号梁段三个工况的分离式钢箱主梁的区段仿真模型.利用空间有限元法,针对悬臂施工状态下分离式钢箱的空间受力状态进行剪力滞效应的计算分析.研究结果表明,分离式钢箱梁在不同施工工况下,其顶、底板剪力滞系数分布规律不同;钢箱梁顶板在外腹板处剪力滞效应较大,并随着离开外腹板处,其剪力滞效应减小较快.在施工过程中,分离式钢箱主梁的同一截面会同时出现正、负剪力滞效应.  相似文献   

18.
湛江海湾大桥钢主梁采用全空腹钢箱梁.在悬臂拼装过程中,由于作用的荷载不同,被吊梁段与吊机作用梁段的变形明显不同.建立空间有限元模型,分析了悬臂拼装阶段截面变形和温度对截面变形的影响.分析结果表明,在大跨度斜拉桥中采用全空腹钢箱梁是可行的,并且温度对悬臂拼装阶段箱梁截面相对变形的影响较小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号