首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
〖JP〗石墨烯疏水性及层间-共轭极大地影响了其生物相容性和分散性,难以有效修饰电极. 文章通过将石墨烯与碳纳米管混合,利用二者之间的非共价结合,消除了石墨烯单一修饰电极的缺点,并通过浸渍法制备了石墨烯-碳纳米管复合碳纳米材料电极. 扫描电镜观察表明,石墨烯与碳纳米管被牢固地固定在碳毡电极表面,形成了复合均一层. 将复合电极用作微生物燃料电池(MFC)的阳极,〖JP+1〗显著改善了MFC的产电性能. 复合阳极的MFC的最大功率密度(760.7 mW/m2)比空白碳毡阳极MFC的(228.8 mW/m2)高2.36倍,因为复合电极显著降低了阳极的电子传递阻力,减轻了阳极极化,改善了阳极电化学性能. 复合碳纳米材料修饰阳极的电子传递阻抗(39.8 )比空白碳毡阳极的(248.7)低84%.〖JP〗  相似文献   

2.
通过恒电流法电沉积分别制备了氧化石墨烯/聚吡咯(GO/PPy)复合材料修饰碳毡(CF)阳极和还原氧化石墨烯/聚吡咯(r GO/PPy)复合材料修饰碳毡阳极.通过循环伏安法和交流阻抗法对电极特性进行考察.将其分别应用到微生物燃料电池中,对其产电性能进行研究.结果表明,相比r GO/PPy-CF电极,氧化石墨烯以掺杂方式加入到聚吡咯中,一步电聚合制备的GO/PPy-CF电极,其电极性能更为优异,且作为MFC阳极时,对电池的产电性能提升更大.该电极制备方法简单,无需使用强还原剂,是一种有效环保的MFC阳极制备方法.  相似文献   

3.
通过恒电位法一步将氧化石墨烯、过渡金属Co和聚吡咯(PPy)三者共固定于碳毡电极表面,制备了复合膜电极,采用循环伏安法、交流阻抗对复合电极进行了电化学测试,并将其用作微生物燃料电池(MFC)的阳极和阴极,考察了其对MFC产电性能的改善作用. 结果表明:碳毡电极表面经修饰后,在三者协同作用下碳毡电极的电容显著增大. 这种修饰有效增加了电极比表面积和导电性能,减小了电荷传递阻抗,提高了电极的电子传递效率. 同时,该电极具有良好的生物相容性及稳定性,使藻菌MFC产电功率增大了3.1倍,且内阻减小了76%.  相似文献   

4.
制备了Mn_3O_4修饰石墨阳极。在微生物燃料电池(MFC)中研究了Mn_3O_4对MFC产电性能及阳极电容特性的影响。Mn_3O_4修饰阳极的MFC最大功率密度为255mW/m2,比对照组提高了25%。Mn_3O_4修饰阳极的MFC比电容为14.7mF/cm2,比对照组提高了88%。在电化学阻抗(EIS)测试中,创建了R(Q(R(QR)))(QR)模型,对MFC内阻与电容的组成和大小进行了分析。测试表明,Mn_3O_4修饰电极降低了生物膜和电极界面的电荷转移内阻,增大了生物膜和电极界面的赝电容,从而提高了MFC的产电能力和间歇式放电MFC的能量利用率。  相似文献   

5.
利用PW12/rGO复合材料负载于碳布表面制得PW12/rGO修饰阳极并构建单室空气阴极微生物燃料电池(microbial fuel cells,MFC),考察了PW12/rGO修饰阳极对MFC产电和高氯酸盐(ClO4-)还原性能的影响,并通过对阳极表面形态及其电化学特性的分析,探讨了PW12/rGO修饰阳极改善MFC产电性能的机理.结果 表明,当ClO4-浓度为700 mg/L时,PW12/rGO修饰阳极MFC的最大输出电压和ClO4-平均去除速率分别为200.18 mV和1.15 kg/(m3·d),分别是空白阳极MFC的4.4倍和1.06倍;扫描电镜(SEM)表征显示,PW12/rGO修饰阳极表面附着的微生物量远高于空白阳极;Tafel曲线、循环伏安曲线(CV)和交流阻抗谱(EIS)测试表明,PW12/rGO修饰阳极较空白阳极具有更高的交换电流密度、CV电活性面积以及更低的电荷转移电阻.PW12/rGO修饰阳极提高了阳极电子产量和电子传递速率,进而改善了MFC的产电性能.  相似文献   

6.
微生物燃料电池(MFC)是能在处理有机污染物时产电的装置。着重研究了MFC同步处理老龄垃圾渗滤液和其产电能力。实验在典型双室MFC装置中进行,其中以碳毡为电极材料,活性污泥为接种源,铁氰化钾溶液为阴极液。MFC驯化6个周期后产电达到稳定,此时以垃圾渗滤液和污泥作为阳极液,检测了电池的产电性能及其对垃圾渗滤液的处理效果。结果表明,经过驯化电池的最大功率密度比使用未驯化的电极对照组提高了22倍,达到了439.1 m W/m~2,电池内阻约为1 kΩ。同时扫描电镜(SEM)观察到电极表面形成一层由典型的球菌和杆菌组成的生物膜。电池运行15 d,垃圾渗滤液化学需氧量(COD)、总氮、氨氮的去除率分别达到了(49.05%±1.40%)、(68.95%±1.07%)、(73.54%±0.91%)。本研究为同步产能及处理老龄垃圾渗滤液提供了数据支持。  相似文献   

7.
 微生物燃料电池(MFC)是一种具备污水处理和产电功能的生物电化学技术装量,在微生物催化下将有机能转化成电能。综述了MFC 电极材料的研究进展,评述了阳极材料及其功能的修饰、阴极催化剂对污水处理和MFC 产电性能的进展,指出MFC电极材料设计和研究是未来的发展重点。  相似文献   

8.
 分别用恒电压法、脉冲极化法、循环伏安法制备聚苯胺(PANI)膜阳极,并应用于固定床微生物燃料电池(MFC),考察其产电及污水处理性能。结果表明,与恒电压法和脉冲极化法相比,循环伏安法制备的PANI 膜阳极导电性最好,且其电极电阻(3.65 Ω)与恒电压法制备的电极电阻(55.45 Ω)相比降低了51.8 Ω。循环伏安法制备的PANI 膜阳极应用于MFC,最大功率密度和开路电压分别为215.6 mW·m-2和849.3 mV,比恒电压法制备的PANI 膜阳极MFC 最大功率密度和开路电压分别提高了50.6%和45.1%。与恒电压法和脉冲极化法相比,循环伏安法制备的PANI 膜阳极,可一定程度上缩短MFC 启动时间,增加电池产电稳定性,提高MFC 对污水有机物的去除率,为MFC 高性能阳极的制备提供了一种新途径。  相似文献   

9.
以碳布为阴阳极材料,乙酸钠为底物,MnO_2@graphene为阴极催化剂构建空气阴极单室微生物燃料电池(MFC),研究了阳极液pH、阳极底物初始COD浓度、MFC运行温度等因素对MFC输出电压和产电功率的影响﹒研究结果表明,阳极液pH对MFC产电性能影响最大,而阳极底物初始COD浓度影响最小﹒在阳极液pH为8、MFC运行温度为308 K和阳极底物初始COD浓度为800 mg/L时MFC的产电性能和污水处理最佳﹒在此条件下,MFC对污水中COD的降解率可达98.4%,输出电压和产电功率密度分别可达0.813 V和2 046.9mW/m~2,说明以MnO_2@graphene为阴极催化剂的MFC具有较好的产电性能和污水处理效能﹒  相似文献   

10.
通过构建一种新型的无膜单室土壤微生物燃料电池(MFC),考察了电极间距和外接电阻对土壤MFC产电性能的影响,并对阳极微生物群落结构进行分析.研究结果表明,电极间距和外接电阻对土壤MFC的输出电压和最大功率密度有显著的影响.当间距从4 cm增大到12 cm时,土壤MFC的输出电压、最大功率密度呈现出先升高后降低的趋势;阴极淹没在1 cm水层以下时,其输出电压显著降低至30 mV左右,最大功率密度为4.67 mW/m~2;外接电阻从300Ω增大到2 000Ω时,土壤MFC的输出电压从80 mV增大到了330 mV,最大功率密度从14.33mW/m~2增大到了60.40 mW/m~2.电极间距的增加或外接电阻的增大对阳极电势有显著影响,而阴极电势并没有发生差异性变化.通过高通量测序分析发现,土壤MFC和开路对照组中的阳极微生物群落结构存在显著差异.产电菌Deltaproteobacteria,Desulfuromonadales和Geobacteraceae在土壤MFC中是优势种群,其中Deltaproteobacteria的相对丰度高达24.91%,Desulfuromonadales和Geobacteraceae的相对丰度也远高于开路对照组.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号