首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 443 毫秒
1.
Ti对高强耐候钢力学性能的影响   总被引:3,自引:0,他引:3  
通过光学显微镜、透射电镜(TEM)以及力学性能测试等手段分析了薄板坯连铸连轧(TSCR)工艺生产Ti微合金化高强耐候钢的成分及工艺对显微组织和力学性能的影响.研究结果表明:钢中加入Ti,屈服强度有明显的提高;钛质量分数为0.05%~0.08%时,高强耐候钢的晶粒尺寸随着钛含量的增加基本不变;高强耐候钢强度的提高主要取决于钢中有效钛的含量,有效钛不仅与钛的含量有关,而且还与S, N的含量有关;在有效钛含量一定的条件下,析出强化的大小主要取决于轧后的卷取温度.  相似文献   

2.
以含Nb微合金化试验钢为研究对象,通过3个不同精轧温度区间的轧制+层流冷却、空冷、超快冷的TMCP工艺获得了含有铁素体、贝氏体、马氏体以及少量残余奥氏体的显微组织.分析了控轧温度区间对含Nb微合金化试验钢显微组织和力学性能的影响.结果表明,在控冷工艺参数相近的情况下,随着精轧开轧温度和终轧温度的降低,试验钢的抗拉强度减小,屈服强度、延伸率和强塑积增大.其中采用850~800℃的温度区间精轧+层流冷却、空冷、超快冷的TMCP工艺时,试验钢的屈服强度、延伸率和强塑积分别达到了513MPa,35%和25235MPa.%的最大值.  相似文献   

3.
对实验钢采用低碳高Ti微合金化的成分设计,进行了控轧控冷实验,通过控制不同的冷速和卷取温度,研究了过冷度和原子扩散速率对钢组织演变及(Ti,Mo)C粒子的析出行为的影响.研究结果表明,冷速为30℃/s,卷取温度为420℃时,实验钢屈服强度大于690MPa,抗拉强度为820MPa,断后伸长率达18%,并具有良好的低温冲击韧性.显微组织性能研究表明,多边形铁素体、针状铁素体、细小M/A岛及弥散的(Ti,Mo)C析出粒子的混合组织可实现强度和韧性的良好匹配.  相似文献   

4.
对V-N微合金化Q550D高强度中厚板进行了控轧控冷工艺试验,研究了沿厚度方向不同位置的显微组织,并测定了其综合力学性能.结果表明:V-N微合金化Q550D中厚板显微组织为多边形铁素体+针状铁素体,表面至心部的平均晶粒尺寸逐渐增大,针状铁素体的质量分数逐渐减少,20~30 nm的(Ti,V)N及小于10 nm的V(C,N)析出物弥散地分布在多边形铁素体和针状铁素体基体上;试验钢屈服强度、抗拉强度、断后延伸率、-20℃冲击功分别为651 MPa,733 MPa,18%,170 J;细晶强化、析出强化、位错强化、固溶强化、针状铁素体组织强化为主要的强化机制;晶粒细化、低C成分设计、针状铁素体组织的形成为主要的韧化机制.  相似文献   

5.
基于CSP工艺,采用Ti基复合微合金技术、控轧控冷及平整工艺,开发了屈服强度700 MPa级别的薄规格高强钢,借助SEM、TEM、EDS和力学性能测试等,分析了不同轧制工艺参数对高强钢性能、组织及析出物的影响。结果表明,该高强钢组织由准多边形铁素体及极少量粒状珠光体构成;薄规格强化及冷却速度控轧的细晶强化、卷取温度控制的析出强化共同决定了钢的组织和力学性能;高温大压下、头部连续冷却有利于薄规格细晶强化,高温(890±20℃)终轧、高温(620±20℃)卷取有利于析出大量尺寸20 nm以下且弥散分布细小的以含Ti为主的(Ti, Nb, Mo)C粒子,析出强化作用明显。与平整前相比,热轧带卷平整后钢屈服强度提高约30 MPa、抗拉强度提高约10 MPa、延伸率降低了7.9%~16.7%。  相似文献   

6.
通过单道次压缩实验,研究了屈服强度390 MPa级Ti微合金化高强钢的热变形行为,并建立了实验钢的变形抗力模型和动态再结晶数学模型.结果表明:随着变形温度的降低,变形抗力逐渐增大;随着应变速率的增大,应力-应变曲线由动态再结晶型转变为动态回复型.Q390钢的动态再结晶激活能为257.142 k J/mol.建立的高精度的数学模型可表征Ti微合金化Q390钢的高温变形行为.与常规成分体系相比,Ti微合金化成分设计的实验钢轧制时所需的轧制力较小,更容易发生动态再结晶,有利于奥氏体晶粒的细化,可有效地提高钢材强韧性.  相似文献   

7.
在普通耐候钢Q450NQR1成分的基础上,通过理论计算,设计出一种钛含量为0.04%~0.10%、屈服强度为520~750 MPa的高强度耐候钢.按照成分设计要求,采用高频真空感应炉在1 873 K条件下熔炼钢样,并对不同钛加入量的钢样进行成分和组织结构分析.结果表明,熔炼的钢样中氧含量为(17~26)×10-6,氮含量为(12~66)×10-6,钛含量为0.006 1%~0.059 0%;钢样组织主要由铁素体和珠光体构成,随着钢中钛含量的增加,晶粒明显细化,钢组织渐趋均匀.SEM分析表明,钢中长方体的TiN夹杂,是以球形的Al2O3、MgO和钛氧化物夹杂为核心生长的,必要时在微合金化处理之前将钢中的氧含量降低到一定程度.  相似文献   

8.
采用光学显微镜、扫描电镜、透射电镜、物理化学相分析等方法并结合热力学计算,分析了CSP工艺生产的钛微合金化高强钢的析出物特征及析出规律.研究发现:屈服强度700 MPa级高强钢中存在大量球形的纳米级TiC和Ti( C,N)粒子及少量不规则形状、100 nm以上的Ti4 C2 S2粒子,TiN在连轧前完成析出,TiC主要在卷取和空冷时析出.不含钼钢和含钼钢(0.1% Mo)中MC相的质量分数为0.049%和0.043%,由于钼的加入,含钼钢中Ti的析出量较少,但析出粒子更为细小,并定量得到了不含钼钢和含钼钢的析出强化效果分别为126 MPa和128 MPa.  相似文献   

9.
Nb-Ti微合金化热轧多相钢的组织和性能   总被引:1,自引:0,他引:1  
通过两阶段控轧和随后的三段冷却,获得了14mm厚的Nb-Ti微合金化热轧多相钢板.利用光学显微镜、扫描电镜、透射电镜、X射线衍射(XRD)、电子背散射衍射(EBSD)和力学性能测试等手段对其组织和性能进行了研究.结果表明,试验钢的显微组织由铁素体、贝氏体和少量马氏体组成;其平均屈服强度为518MPa,抗拉强度为616MPa,延伸率高达41%;组织中大量的铁素体大角度晶界、近似等轴状铁素体晶粒和较小尺寸贝氏体束的存在,大大提高了试验钢的塑性;铁素体和贝氏体组织的细化,细小的(Nb,Ti)C粒子以及铁素体晶粒和贝氏体板条内的位错提高了试验钢的强度.  相似文献   

10.
600 MPa级钛微合金化高强钢的组织与性能研究   总被引:1,自引:0,他引:1  
采用光学显微镜、透射电镜以及能谱分析等对转炉CSP流程600 MPa级钛微合金化高强钢的组织及性能进行研究.结果表明,试验钢具有良好的综合力学性能,其典型组织为多边形铁素体加粒状贝氏体;位错和位错胞的强化作用成为钛微合金钢的主要强化机制之一;钢中M/A岛在增加试验钢强度的同时并未明显降低其韧性和塑性;试验钢中存在TiN、TiC和TiS等析出物,为钢的细晶强化和析出强化提供了保证;试验钢中存在大量纳米级铁碳析出物,其沉淀强化作用不容忽视.  相似文献   

11.
利用扫描电镜(SEM)和透射电镜(TEM)等仪器研究卷取温度对高Ti微合金热轧高强钢显微组织和力学性能的影响。研究结果表明:随着卷取温度的升高,抗拉强度不断减小,屈服强度先增加再减小,伸长率不断增大。当350℃卷取时,试验钢拥有良好的综合力学性能,即抗拉强度为1 253 MPa,屈服强度为1 099 MPa,伸长率为13%,-20℃冲击功为102 J。这是因为该卷取温度略低于M_s点,试验钢显微组织由大量板条贝氏体(细小且交织)、少量马氏体和针状铁素体组成,这种显微组织能有效阻碍位错运动,从而提高强度。同时大角度晶界能够阻碍裂纹扩展,再加上板间的薄膜M/A,保证了材料的塑性和韧性。  相似文献   

12.
高强钢具有强度高、韧性好、可焊性优良等优点,其在土木工程中的应用越来越广泛.高强钢在火灾下的力学性能是钢结构抗火设计的重要影响因素.为获取高温下与高温后Q550D高强钢材料的力学性能,基于稳态试验方法,对Q550D高强钢开展了拉伸试验,考察了不同冷却方式(自然冷却与浸水冷却)与过火温度对Q550D高强钢力学性能的影响,获取了不同温度工况下Q550D高强钢的应力-应变曲线和高温下与高温后各项力学性能参数指标(弹性模量、屈服强度、抗拉强度和极限伸长率)的折减系数,并将试验结果与已有规范和文献结果进行了对比分析.结果表明:高温下Q550D高强钢的弹性模量、屈服强度、抗拉强度随着试验温度的升高而逐渐下降,其折减系数均低于各国规范的取值;当温度超过400℃时,高温下Q550D高强钢的弹性模量、屈服强度和抗拉强度下降明显,当温度超过700℃时,3个力学性能指标均接近于零;不同冷却方式与过火温度对Q550D高强钢的弹性模量影响不大;当温度低于600℃时,高温冷却后Q550D高强钢的屈服强度和抗拉强度的折减并不明显,当温度超过600℃时,屈服强度和抗拉强度显著下降,且自然冷却方式下的下降程度更大;高强钢与普通钢高温冷却后的屈服强度与抗拉强度存在较大差别.  相似文献   

13.
根据纳米析出强化机制,设计了一种屈服强度为890MPa的超高强海洋工程用钢——NEU890钢.在相同固溶条件下,研究了时效温度对NEU890钢显微组织、室温拉伸性能、-40℃ Charpy冲击功的影响.用透射电子显微镜分析纳米级析出相分布,并计算出其强度贡献值.结果表明,固溶态试样屈服强度为852MPa,500℃时效屈服强度达到峰值1026MPa,呈现典型时效析出强化特征.NEU890钢的脆性时效温度区间为300~500℃.当时效温度为550~600℃时,NEU890钢的屈服强度为994~910MPa,-40℃冲击功为108~166J,可满足EQ91钢拉伸和冲击性能指标要求.  相似文献   

14.
在Gleeble-3500热模拟试验机上进行冷轧超高强度双相钢的连续退火工艺研究,利用光学显微镜、扫描电镜、透射电镜和拉伸试验研究了连续退火过程中各个参数对1 000 MPa级冷轧双相钢组织性能的影响.结果表明:试验用钢在退火温度800℃下保温80 s,可以得到抗拉强度为1030MPa、延伸率为14%超高强双相钢;随着退火温度的升高,屈服强度和抗拉强度降低.当退火温度为830℃时,显微组织中粒状的非马氏体组织明显增多.过时效温度低于300℃时,屈服强度和抗拉强度变化不大;当过时效温度超过300℃时,抗拉强度急剧下降,屈服强度先降低后升高,在过时效温度为360℃时开始出现屈服平台.  相似文献   

15.
采用光学显微镜、透射电镜以及能谱分析等对转炉CSP流程600 MPa级钛微合金化高强钢的组织及性能进行研究。结果表明,试验钢具有良好的综合力学性能,其典型组织为多边形铁素体加粒状贝氏体;位错和位错胞的强化作用成为钛微合金钢的主要强化机制之一;钢中M/A岛在增加试验钢强度的同时并未明显降低其韧性和塑性;试验钢中存在TiN、TiC和TiS等析出物,为钢的细晶强化和析出强化提供了保证;试验钢中存在大量纳米级铁碳析出物,其沉淀强化作用不容忽视。  相似文献   

16.
采用C-Si-Mn-Cr-Nb合金系,采取两种热轧、退火工艺,在实验室试制Nb微合金化冷轧双相钢DP980. 结果表明,两种试制钢的抗拉强度分别为1 034 MPa和1 048 MPa,屈服强度分别为534 MPa和499 MPa,伸长率分别为11.2%和11.3%,n值分别为0.28和0.27,屈强比分别为0.52和0.48;试制钢的热轧组织为F+P,连续退火后的组织为F+M,退火后的应力应变曲线表现出连续屈服的特点.  相似文献   

17.
简要叙述了关于钢强化机理的研究现状,用化学相分析+X射线小角散射、RTO方法及高分辨透射电镜对薄板坯连铸连轧钛微合金化高强耐候钢中纳米粒子的属性进行了综合分析。发现钛微合金化高强耐候钢中尺寸<36 nm的粒子,除纳米TiC以外,还存在大量的纳米Fe3C,其体积分数为同尺寸TiC体积分数的4.4倍,析出强化作用比纳米TiC粒子大,不可忽略;提出了钢的综合强化机理,指出对不同种类、不同尺寸的纳米析出粒子,应分别根据位错切割和位错绕过机理计算出析出强化贡献,然后与固溶强化和细晶强化贡献加和,求得钢的屈服强度;讨  相似文献   

18.
为研究600 MPa级高强钢筋高温下的力学性能,对HTRB600级热处理高强钢筋进行高温下的拉伸试验,分别测得其在20,200,300,400,500,600,700及800℃高温下的弹性模量、比例极限、屈服强度、极限强度及应力-应变曲线.试验结果表明:HTRB600级高强钢筋高温下屈服强度、极限强度、比例极限与弹性模量均随着温度的升高而显著降低.500℃时其高温下的弹性模量、比例极限、屈服强度与极限强度降低为不足常温下的50%,800℃时已不足常温下的10%.高温下HTRB600级高强钢筋应力-应变曲线随温度的升高逐渐趋于圆滑,当温度达到200℃时,屈服台阶就已消失.600 MPa级钢筋高温下屈服强度和极限强度的降低程度明显大于其他钢筋500 MPa以下强度的钢筋.最后提出了适用于HTRB600级高强钢筋的高温下应力-应变曲线简化计算模型.  相似文献   

19.
710MPa级热轧高强钢的组织性能   总被引:2,自引:0,他引:2  
用1750mm热连轧机组,通过控轧控冷工艺轧制了8mm厚的高强汽车板,利用光学显微镜、扫描电镜(SEM)、透射电子显微镜(TEM)等对其组织与性能进行了研究.结果表明,试验钢的组织主要为细晶铁素体和分布在铁素体晶界处的碳化物;试验钢的屈服强度为650MPa左右,抗拉强度达到740MPa左右,应变硬化指数和塑性应变比分别为0.12和0.80,达到了很好的强韧性匹配;细化的铁素体晶粒及尺寸细小的TiC析出物有效提高了试验钢的强度.  相似文献   

20.
采用力学试验及金相显微镜、透射电镜、能谱仪等微观分析手段,研究了09CuPTiRE耐候钢的显微特征及其对强韧性的影响.结果表明,保持与09CuPTiRE耐候钢相近的化学成分、纯洁度和均匀性,采用合适的两相区多道次控轧和25~15℃/s控冷工艺方法,控制较低的终轧温度和卷取温度,可以获得具有良好强韧性能的显微组织,大幅度地提高钢的强韧性指标,其屈服强度大于378 MPa,-40℃ V型缺口的冲击功大于60J,超过了Q345GNH的水平.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号