首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
给出了一种基于动态分组的多策略引力搜索算法.算法迭代初期利用自适应分组策略对种群进行分组寻优,每个分组内只更新最差个体,采用云模型理论来改进最优个体的进化行为;迭代后期将种群分为优势子群和拓展子群,采用差分变异算子更新优势子群提高寻优精度和速度,利用Tent混沌理论进化拓展子群完成个体变异.典型复杂函数测试表明,该算法具有很好的收敛精度和计算速度.  相似文献   

2.
针对原始差分进化算法在求解约束全局优化问题时存在陷入局部最优的缺陷,提出一种改进的差分进化算法.该算法在保留原始差分进化算法全局搜索能力的基础上,采用基于规则的方法进行约束处理和种群个体的比较及选择,并利用种群相似度和最优变异操作改善种群进行全局范围搜索的多样性,提高算法跳出局部最优的能力.数值实验表明,该算法稳定性较好,目标函数评价次数较少,收敛速度较快,全局寻优能力较强,不仅能有效求解连续变量约束优化问题,也适用于离散变量或混合变量优化问题.  相似文献   

3.
为充分发挥战机集群整体作战优势以得到最优目标分配方案,采用改进狼群算法对战场态势模型进行求解.通过保证算法的寻优效率,引入次头狼概念对狼群的召唤与围攻行为做出改进,并对狼群算法的更新机制做出了优化,提高算法的全局寻优能力.仿真结果表明,所提方法能快速准确地寻找到最优目标函数值,且在一定程度上改善了传统狼群算法易陷入局部...  相似文献   

4.
一种改进的自适应差分进化算法   总被引:3,自引:0,他引:3  
为了提高基本差分进化算法的寻优速度和寻优效能,提出了一种改进的自适应差分进化算法(ADE).在基本差分进化算法中引入了自适应变异算子,根据每个个体与最优个体适应度值的相互关系,自动地调节变异算子值,使之在进化初期较大,随着个体逐渐接近最优值,算子值逐渐变小,确保个体向最优值快速、稳定地逼近.在每一代变异、交叉和竞争之后,又增加了与随机新种群的竞争操作,使算法易于跳出局部最优点,以提高全局搜索能力.采用4个经典的测试函数对算法进行验证,结果显示:该算法的收敛速度与收敛精度在一定程度上优于基本差分进化算法,同时也优于基于代数进行自适应变异的差分进化算法.  相似文献   

5.
基于差分进化算子变异的中心引力优化算法   总被引:1,自引:0,他引:1  
针对中心引力优化算法易陷入局部最优这一不足,加强算法的全局寻优能力,提出一种改进的中心引力优化算法,根据差分算法本身的固有特性,通过引入差分进化算子对当前粒子位置的分量进行变异,促使算法摆脱局部最优,增强算法的全局收敛性.最后选取5个经典函数对算法进行测试,并与其他算法进行比较分析,结果证明算法的精度得到了明显提高,从而验证了该算法的有效性和可行性.  相似文献   

6.
针对函数优化问题求解算法存在速度慢、精度低等问题,提出一种函数优化问题求解的自适应差分进化算法.该算法对变异算子和交叉算子进行改进,增强了其寻优能力.对经典的函数优化问题进行仿真测试,结果表明,自适应差分进化算法全局搜索能力强,收敛速度快,可以获得更高精度的函数优化问题解.  相似文献   

7.
提出了一种非线性约束优化问题改进的教-学优化算法,该算法首先提出了自适应的教学因子,对学习阶段的迭代方程进行改进,引入了差分变异策略;其次利用约束违反度函数将约束优化问题转化为无约束双目标优化问题,在每次迭代中按照约束违反度的大小保留部分性能较优不可行个体,有效地维持了种群的多样性;最后数值实验表明,该算法具有较快的收敛速度和较好的全局寻优能力.  相似文献   

8.
在差分进化算法的基础上,提出一种基于多准则寻优策略的改进差分进化算法。该算法可以动态调整变异因子和交叉概率,基于文中提出的多准则寻优策略,通过个体适应度、个体间距离等评价指标判断个体的优劣程度,并且可以降低种群的高密度程度,增强种群多样性。这种判断机制可以有效避免种群过早收敛,易陷入局部最优的风险。通过具体的测试函数对算法进行测试,并与标准差分进化算法进行比较,结果显示算法寻优效果较好,可以较快地得到全局最优解。  相似文献   

9.
针对基本差分进化算法收敛速度较慢的问题,将粒子群优化算法中的社会学习部分引入到差分进化算法中,提出一种改进的差分进化算法。该算法通过小概率随机变异操作增加种群的多样性和全局搜索能力;变异向量和个体向群体最优个体学习的结果进行交叉操作,利用最优个体指导进化过程,加快了算法的收敛速度,提高了优化精度。仿真实验结果表明,该算法具有更好的优化性能。  相似文献   

10.
针对布谷鸟寻优算法在多维优化函数搜索中存在收敛速度慢、寻优精度低的缺陷,提出了一种基于混合变异算子的布谷鸟优化算法。该算法在每次迭代后采用全局收敛引导的非均匀变异算子对鸟窝位置进行变异,再根据最优位置适应度值的变化率确定是否陷入了局部最优值,若陷入局部最优则利用高斯变异算子对鸟窝位置进行调整,从而提高了收敛速度以及寻优精度。通过6个经典测试函数的测试,实验表明改进后的布谷鸟算法具有较好的寻优精度和收敛速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号