首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
含钛高炉渣中含有20%~30%的TiO_2,是一种附加值较高的二次资源,但在综合利用过程中存在氧化物还原难度大,硅钛难分离,二次污染严重等问题。基于热力学理论基础,采用真空碳热还原联合酸浸工艺处理含钛高炉渣制备TiC。结果表明:真空有助于钛氧化物彻底还原,可实现渣中硅钛彻底分离,减少酸耗量,降低二次污染。真空碳热还原联合酸浸工艺处理含钛高炉渣(TiO_2含量23%左右)制备TiC的最佳条件为:炉渣粒度200目,还原温度1 673K,渣碳质量比100∶38。  相似文献   

2.
对攀钢集团有限公司含钛高炉水淬渣进行定向富集,并对富集渣进行浮选研究.结果表明,在焙烧温度为1 250 ℃、碱度R=3.0、渣中CaF2加入量为6%、焙烧时间为4 h及冷却速率为10 ℃/min的条件下,钙钛矿的晶粒可长大到40 μm左右;在羟肟酸用量为12 kg/t,pH值为9,起泡剂为2#油的条件下进行浮选,精矿中TiO2品位可达到50%左右,TiO2回收率约为35%;尾矿中TiO2品位在10%左右.  相似文献   

3.
硫酸盐修饰的含钛高炉渣光催化还原Cr(Ⅵ)   总被引:3,自引:3,他引:0  
采用高能球磨法,在300℃煅烧2 h合成了具有钙钛矿型的硫酸盐修饰的含钛高炉渣(sulfate-modified titanium-bearing blast furnace slag,STBBFS)催化剂.用X射线衍射、扫描电子显微镜和紫外-可见漫反射分析对硫酸盐修饰的含钛高炉渣催化剂进行了表征,确定其具有钙钛矿型;粉体的颗粒形态均为不规则形状,平均粒径为1.5μm左右;在紫外区域具有很强的光吸收能力.由六价铬的还原率来评价STBBFS催化剂的光催化活性,结果表明:与市售TiO2相比,钙钛矿型的STBBFS催化剂具有较高的光催化活性,500 W中压汞灯照射4 h,可将质量浓度为20 mg/L...  相似文献   

4.
机械活化硫铁矿还原Fe 3+反应动力学   总被引:2,自引:2,他引:2  
硫铁矿烧渣是生产硫酸时产生的固体废弃物.在50%的硫酸溶液中加入硫铁矿烧渣,于115 ℃反应4 h后过滤得到硫铁矿烧渣酸浸液.当酸浸液中Fe 3 和Fe 2 的浓度分别为2.016 mol/L和0.138 mol/L时,取酸浸液500 mL,加入40 g硫精矿,在90 ℃下反应240 min,Fe 3 被还原成Fe 2 的转化率只有26.30%;加入40 g机械活化硫精矿,在90 ℃下反应240 min,Fe 3 被还原成Fe 2 的转化率达到76.75%.实验结果表明:通过机械活化,硫铁矿反应活性大大提高;机械活化硫铁矿与硫铁矿烧渣酸浸液中Fe 3 反应符合收缩未反应芯模型,属化学控制;反应动力学方程为1-(1-x) 1/3=kt,其活化能E-0为35.12 kJ/mol.  相似文献   

5.
氧化对含钛高炉渣含钛相演变规律的影响   总被引:3,自引:0,他引:3  
氧化条件下含钛高炉渣中含钛矿相的改变是含钛高炉渣综合利用的关键.通过扫描电子显微技术、X射线能谱分析、X射线物相分析和图像分析等手段,对氧化前的含钛高炉渣及其氧化改性后渣的形貌像进行分析.结果表明,氧化后渣中含钛相的形貌、成分和相结构等发生变化;钛的赋存状态也发生相应的改变,渣中攀钛透辉石和富钛透辉石几乎消失,渣中弥散分布的钛组分大部分转移到钙钛矿相,而且实现长大和粗化.  相似文献   

6.
含钛高炉渣是含钛冶金渣中难以处理的一类硅铝酸盐固体废弃物,大量堆积的含钛高炉渣造成了严重的资源浪费和环境污染。因此,开发绿色、高效的含钛高炉渣利用途径是资源节约和环境保护的关键需求。在过去的几十年里,多种途径被用于含钛高炉渣高效利用的研究,并在研究含钛高炉渣的基本特征和开发高效方法等方面取得了重大进展。本文回顾了近年来高效利用含钛高炉渣的各类方法,从用作建筑材料的原料、碳化氯化法提钛、钛合金的制备、酸法、碱熔煅烧法和高温重结晶–富集等角度全面地介绍了高效利用含钛高炉渣的研究进展。重点讨论了各类方法的反应机制和目前的现状。然而,目前的利用方法在效率和成本上仍与实际应用相差很远。因此,开发清洁、高效、大规模利用含钛高炉渣的新方法仍然是一个重要的目标。要实现这一目标,需要重点研究以下三个方面:(1) 发展新兴的理论方法;(2) 开发全面可靠的热力学性质数据库;(3) 开发先进的表征方法。这一系统和全面的回顾将有利于设计高效和低成本的利用路线。  相似文献   

7.
根据湘潭钢铁公司的冶炼条件,以现场渣为基料,添加化学试剂,配制成高Al2O3渣系。研究在高Al2O3炉渣条件下的高炉渣主要成分、碱度等对硫分配比性能的影响。研究结果表明,在高Al2O3炉渣条件下,该高炉渣的WMgO为12%,二元碱度R为1.15最有利于脱硫。  相似文献   

8.
为回收利用高炉渣中的有效元素,以高镁炼铁炉渣的硫酸酸解液为原料,采用絮凝脱硅法分离回收硅元素。研究絮凝剂种类、絮凝温度、絮凝时间、絮凝剂质量分数和絮凝剂加入量等因素对脱硅效果的影响,并利用X射线衍射(XRD)与扫描电镜-能谱分析(SEM-EDS)对脱硅渣的物相和结构进行分析。研究结果表明:阳离子高分子絮凝剂能有效脱除酸解液中带负电的硅酸分子。在反应初期,随絮凝温度、时间、絮凝剂质量分数和絮凝剂加入量的增大,脱硅率增大;絮凝温度继续增大,絮凝剂聚合氯化铝和PDADMAC自身受到温度影响,脱硅效果下降;絮凝剂质量分数继续增大,聚丙烯酰胺发生“架桥保护”,脱硅效果下降。最佳反应条件如下:脱硅絮凝剂为聚丙烯酰胺,絮凝温度为50℃,絮凝时间为1.5 h,脱硅絮凝剂质量分数为1%,每50 mL酸解夜中,脱硅絮凝剂加入量为8 g。在最佳反应条件下,有效脱除了高炉渣酸解液中的硅元素,硅元素质量浓度由1 366 mg/L降低到235 mg/L,脱硅渣中硅氧含量(质量分数)达95.8%,可用于制备水玻璃、硅肥等产品。  相似文献   

9.
利用固体透氧膜(SOM)法直接由含钛渣还原制备金属钛及其合金。将粉态含钛渣压片制成阴极,以YSZ管内碳粉饱和的铜液为阳极,以1100℃电解温度、3.5V槽电压在CaCl2熔盐中电解,研究成型压力及电解时间对电解产物的影响,分析电解过程中的杂质行为。结果表明,随电解时间的延长,电解产物中的钛、铁含量不断增大,产物颗粒形貌趋于匀细疏松;对于铁钛渣,电解6h可获得钛铁合金;对于高钛渣,成型压力为3MPa时,电解4h可除去氧,电解6h可获得纯金属钛;较小成型压力下的多孔阴极有利于杂质元素的去除。  相似文献   

10.
随着优质铁矿资源的消耗,钢铁企业可利用的铁矿原料品位逐渐降低。因此,高铝质铁矿资源越来越受到钢铁企业的关注,但高铝原料在高炉冶炼过程中会带来渣铁黏稠、炉温偏低、冶炼安全等一系列问题。本研究中采用FactSage热力学软件分析Al2O3质量分数对高炉渣平衡物相、熔化温度、相析出温度的影响以及高铝渣液相区变化和黏度变化,旨在为高炉冶炼高铝原料提供一定的基础支撑。研究发现:炉渣为低铝(5%~10%)含量时,随着Al2O3含量增加,炉渣熔化温度升高,析出相为黄长石相和纯物质相,高炉渣黏度变化不大,炉渣中SiO2含量高,炉渣黏度过高,不适合高炉冶炼;炉渣为中铝(10%~15%)含量时,随着Al2O3含量增加,炉渣熔化温度升高,析出相为尖晶石相、黄长石相和纯物质相,高炉渣黏度增加幅度略有提高,Al2O3含量对高炉渣性质影响较小,增加炉渣二元碱度对炉渣黏度降低效果较明显;炉渣为高铝(15%~30%)含量时...  相似文献   

11.
高炉渣含量与热处理制度对矿渣微晶玻璃性能的影响   总被引:1,自引:0,他引:1  
运用DTA、XRD和SEM等现代分析技术对CaO(MgO)-Al2O3-SiO2系矿渣微晶玻璃的核化晶化温度、物相组成和显微结构进行了分析,探讨了高炉渣引入量和热处理制度的影响.试验结果表明,当高炉渣引入量为45%时,主晶相为硅灰石(CaSiO3)和透辉石(CaMg(SiO3)2),材料结构均匀致密,性能良好.本文适宜的热处理工艺参数为退火温度670 ℃;核化温度850 ℃,晶化温度970 ℃,各保温1 h.  相似文献   

12.
针对高铝粉煤灰拜耳法溶出渣进行了脱碱工艺研究,考察了[n(C)/n(S)](CaO与SiO2物质的量比)、反应温度、反应时间、液固比及体系碱浓度等对脱碱的影响,同时考察了脱碱过程对氧化铝溶出率的影响.结果表明:添加石灰的方式可以实现高铝粉煤灰拜耳法溶出渣中氧化钠的脱除,并回收部分氧化铝;反应温度对氧化钠和氧化铝回收率均造成显著影响,而[n(C)/n(S)]仅对氧化钠的溶出率影响较大;在温度260℃、氧化钠质量浓度小于80g/L、液固比4、[n(C)/n(S)]为1.8、反应时间2h条件下,脱碱率为91.2%,氧化铝回收率为28.0%;拜耳渣脱碱过程物相由水合铝硅酸钠向水化石榴石及铁水化石榴石转变.  相似文献   

13.
以KOH为改性剂,利用渣碱共熔反应对攀钢含钛电炉熔分渣进行改性处理,成功地将炉渣中Ti元素从原来的重钛酸镁选择性地富集到偏钛酸钾中,同时渣中镁铝尖晶石和镁橄榄石转化为易溶于水的铝酸盐和硅酸盐.采用X射线衍射技术研究了共熔反应中煅烧温度、渣碱比(含钛电炉熔分渣的质量与KOH质量之比)、保温时间等对Ti元素迁移富集和镁铝尖晶石转化的影响.当渣碱比为1:2.1、煅烧温度700℃及保温时间1 h时,生成的偏钛酸钾衍射峰达到最强,镁铝尖晶石的衍射峰最弱,有效地实现了Ti元素的选择性富集及镁铝尖晶石的物相转化.实验证实了较高K/Ti比( K2 O与TiO2的摩尔比)是生成偏钛酸钾的主要原因.以最佳碱熔条件下得到的共熔渣为原料,经过后续处理,在850℃的条件下合成了六钛酸钾纳米晶须.  相似文献   

14.
采用无焙烧直接加压酸浸工艺,以钛白废酸为浸出剂,转炉钒渣为原料进行浸出提钒实验研究.热力学分析表明:可溶性含钒离子在酸性溶液中能够稳定存在.根据浸出实验得出:初始酸浓度是影响酸浸过程的重要因素,在初始酸质量浓度为250g·L-1,反应温度150℃,反应时间40min,液固比12∶1,氧分压02MPa的条件下,钒的浸出率为9851%.不同条件下的浸出渣XRD图谱表明:在钒浸出率增大的过程中,含钒尖晶石相逐渐消失,钛铁矿相发生转化形成锐钛矿相在浸出渣中富集.  相似文献   

15.
采用水热法,以氢氧化钠为分离剂,从含钛电炉熔分渣中成功制备出纳米片状结构二氧化钛光催化剂,并探讨了水热反应时间、水热温度以及碱液浓度对分离提取纳米片状结构二氧化钛的影响.随着水热反应时间的延长,水热温度以及氢氧化钠溶液浓度的提高,从含钛电炉熔分渣中分离提取的二氧化钛结晶度越好,微观形貌更趋近于纳米片状结构.水热法处理含钛电炉熔分渣的最佳反应条件是:水热温度高于180℃,水热反应时间大于24h,碱液浓度达到12mol·L^-1.以制备得到的纳米片状结构二氧化钛为光催化剂,在氙灯光照90min后,甲基蓝降解率可达81.1%.  相似文献   

16.
提出了氟碳铈精矿钙化转型预处理-酸浸提取稀土的新思路.首先采用高压DSC技术考察了钙化转型渣酸浸动力学,结果表明:钙化转型渣浸出30℃室温条件下即可进行,反应的表观活化能为0.014 k J/mol、反应级数为0.11.然后系统研究了盐酸浓度、酸浸温度、酸浸时间、液固比等对浸出效果的影响,钙化转型渣合适的酸浸条件为:酸浸温度80℃,盐酸浓度1 mol·L-1,酸浸时间30 min,液固比15∶1.  相似文献   

17.
通过种分法制备了易溶氢氧化铝,研究了分解原液浓度、晶种数量和分解温度等实验条件对铝酸钠溶液分解率及氢氧化铝酸溶性的影响.研究结果表明,其最佳条件是:分解初温为40℃,分解终温为30℃,分解原液的Al2O3浓度为130g/L,晶种数量为0.4g/L,产品酸溶率在90%以上.并通过SEM和XRD对粒子的形态和晶体结构进行了表征.  相似文献   

18.
高温稳定TiO_2 -SiO_2 复合粉体的两步水热法制备   总被引:2,自引:0,他引:2  
以钛酸丁酯和硅酸乙酯为原料,通过两步水热法制备了具有高光催化活性的高温稳定TiO_2-SiO_2复合粉体. 采用动态光散射粒度分析仪、差示扫描量热仪、傅里叶变换红外光谱仪、透射电子显微镜和X射线衍射仪等对TiO_2-SiO_2复合粉体进行了表征. 粒度分析表明,复合粉体分散良好, 颗粒大小为10~30nm,颗粒分布较窄. 热分析表明,SiO_2的加入能显著提高TiO_2的热稳定性.物相分析表明:复合粉体中SiO_2含量越高,锐钛矿型TiO_2的高温稳定性越好;TiO_2/SiO_2摩尔比为1: 1的复合粉体在1200℃处理2h后仍保持锐钛矿晶型. 红外分析表明,800℃处理2h前后的复合粉体中均无 Ti-O-Si 键. TiO_2-SiO_2复合粉体在紫外光作用下使甲基橙水溶液降解的实验表明:未经热处理的复合粉体的光催化性能和商品P25 TiO_2粉体相似;800℃和1000℃热处理2h后的复合粉体的光催化性能保持良好, 远高于相同条件处理过的P25;1200℃处理2h后的复合粉体只有微弱的光催化活性.  相似文献   

19.
为了克服矿渣水泥稳定碎石基层早期强度不足的问题,选择氢氧化钠与硅酸钠两种碱性激发剂对矿渣水泥的活性进行激发,根据单掺试验结果掺配出一种复合碱激发剂,并研究了该复合碱激发剂对水稳碎石基层无侧限抗压强度、劈裂强度、抗弯拉强度、抗压回弹模量及干缩性能的影响。试验结果表明,掺入氢氧化钠或硅酸钠均能有效激发矿渣水泥的活性,二者的合理掺量分别为6%与4%,按此合理掺量复配而成的复合碱激发剂具有比单掺更优异的效果;该复合碱激发剂较好地提高了基层试块的无侧限抗压强度、劈裂强度、抗弯拉强度、抗压回弹模量,但对干缩性能产生了不利影响。  相似文献   

20.
用热重法建立一种分析电石渣固硫性能的方法.通过分析电石渣的固硫机理,利用煤燃烧、电石渣热分解和电石渣与煤混合试样的TG曲线计算生成电石渣固硫反应TG曲线,同时通过各试样残留质量间的关系计算出了不同钙硫摩尔比电石渣的固硫效率.结果表明:三种实验条件下,钙硫摩尔比为1.5时,电石渣固硫效果最好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号