首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 631 毫秒
1.
火星电离层早期的观测数据非常少,除了Viking登陆器对火星电离层的在位测量外,火星电离层的主要物理信息是通过掩星观测方法得到的.近年来,Mars Global Surveyor和Mars Express轨道器通过掩星观测的方法对火星的上层大气和电离层进行了长期的观测,得到了大量的火星电离层电子密度廓线资料.火星电离层受到来自太阳EUV和X射线辐射、太阳风、太阳耀斑、中性大气、表面壳磁场、宇宙射线、流星等多种因素的影响,使其结构发生瞬态或季节性的变化.本文介绍了行星无线电掩星探测的基本原理和技术特点,回顾了国内外科学家们基于已有的火星掩星观测数据(主要是Mars GlobalSurveyor和Mars Express)在火星电离层研究中的一些最新科学成果,并详细介绍了火星电离层的结构和火星夜间电离层的主要特征.  相似文献   

2.
太阳地球物理学的对象和任务太阳、星际间的介质和包括大气和其他层的地球是太阳地球联系链条中的主要环节。太阳地球物理学研究的对象是太阳和地球之间的全部介质和介质中发生的过程。在太阳地球物理学面临的问题中,我们将注意这样一些基本问题,如揭示负责太阳爆发、粒子加速度、太阳风和星际间磁场结构形成的物理机制,以及负责使太阳风的能量传给地球磁层和磁层与电离层相互作用的物理机制。在应用计划方面,太阳地球物理学的主要任务可表述如下: 为了实用航天学和国民经济有关部门的需要,判断  相似文献   

3.
太阳风是太阳活动与地球空间环境之间进行联系的一个关键媒介,其中太阳风动压与行星际磁场则是能够引起地球磁层变化的主要因素.一旦太阳风动压发生增加或者减少均会压缩或释放一定的能量,从而导致地球磁层全球性响应的产生.其中同步轨道磁场与地面磁场一般又是受磁层电流以及电离层电流影响的两个最典型研究对象.该文探讨了地球磁层对太阳风动压响应的观测结果和物理机制,分析了不同太阳风动压脉冲对磁层顶进行作用过程中,地球同步轨道磁场以及地球水平磁场之间存在的相应的响应关系,据此来获取在太阳风动压变化基础上磁层电流系的变化对不同区域磁场所带来的影响.  相似文献   

4.
考虑太阳风动压与火星大气中的粒子热压与磁压之和平衡,建立了火星磁层顶形成的理论模型,结合卫星观测数据,对子午面内向日侧火星磁层顶位形进行数值计算和分析,研究了火星磁层顶位形及其与太阳风动压之间的变化关系。结果认为,火星磁层顶位形与地球磁层顶相似;太阳风动压越大,火星磁层顶越靠近火星; 反之,越远离火星。这些结果,对于了解火星感应磁层形成的物理机制有着重要科学意义。  相似文献   

5.
前言高温高压是研究地球和天体演化的重要状态参数,因为地球和许多星体内部具有很高的压力和温度。空间科学的发展获得了木星、金星、火星及月球的大量资料,表明这些行星内部是超高压世界。木星的中心压力为140兆巴,温度为3000°K。土星也差不多处于相同的压力下。水星、火星和金星都分异出幔和核。水星和火星还具有金属核。地球的中心压力为3.89兆巴,温度约为5000℃。空间探测还获得了地球外空场存在有磁层和地冕,这些都是研究地球演化的重要资料。对地球整体来讲,它应当包括磁层、电离层、大气层、水圈及固体地球——地壳、地幔和地  相似文献   

6.
 空间天气指瞬时或短时间内太阳表面、太阳风、磁层、电离层和热层的状态,涉及从地球表面几十千米到太阳表面的广阔区域.空间天气模型建立在大量空间探测数据的基础上,是对各种参数在空间分布的定量化描述.随着研究工作的不断深入,空间天气模型已由单一应用发展到集成应用的阶段.如何将物理类型、运行条件不同的单一模型集合为一个有机整体,建立基于空间天气模型的定量化预报系统,加强模型间的联系,提高模型预报的应用水平,是当前空间天气预报研究的重要课题.  相似文献   

7.
本文基于太阳风-磁层-电离层耦合的全球磁流体力学(MHD)数值模拟,研究几种典型的太阳风动压和行星际磁场条件下,地球子午面上方磁层顶的位置和形状特征,以及磁层顶位形参数日下点距离和磁层顶张角随行星际条件的变化规律。模拟结果表明:正午午夜子午面磁层顶位形具有内凹结构,当行星际磁场为南向时,随磁场强度增强,日下点距离减小;行星际磁场为北向时,随磁场强度增强,日下点距离增大。动压增大,日下点距离减小。南向磁场强度增强,磁层顶张角变大。这些模拟结果与基于卫星数据的高纬经验模型(B00)以及(Schield)模型的经验结论相吻合,说明MHD模拟是研究磁层顶位形的有效工具。特别是在高纬穿越数据的获得受限时,基于对磁层顶位形的物理理论研究构建的数值模拟数据是解决这一问题的有效途径。  相似文献   

8.
正火星是地球的"邻居",直径约为地球直径的一半。火星的表面有大量氧化铁,我们常见的红色铁锈的主要成分便是氧化铁,所以火星远看是橘红色的。火星类似于科幻小说中的沙漠行星,地表沙丘、砾石遍布。它因为离太阳较远(它与太阳的平均距离约是地球与太阳平均距离的1.5倍),得到光照较少,表面平均温度低至-55℃。火星上大气稀薄,其中绝大部分是二氧化碳(95.3%),有极少氧气(0.15%)。火星有一个巨大的臭氧洞,阳光不受遮挡,直接照射到火星表面。火星如今也没有磁场保护,被太阳风肆意侵袭。目前,人类没有在这个星球上发现生命。  相似文献   

9.
 人类已在火星、木卫二及土卫二上发现了大量盐类矿物,木卫三、木卫四也可能有盐类存在,可见盐类在行星普遍存在.盐类研究对于行星科学具有重要意义.首先,盐类光谱研究直接帮助研究者对探测数据进行解译,确定盐类矿物种类,在探测数据不明确的情况下,盐类稳定性质等还可以帮助限定盐类矿物在探测区域出现的可能性;其次,盐类矿物是行星多层圈相互作用的产物,对行星盐类的研究可以获取行星相关过程中的地质历史信息,根据所研究盐类起源的不同,盐类研究有助于理解行星内部的演化、表面水溶液环境、大气成分和结构;此外,盐类起源是生命起源的基础,行星盐类研究是地外生命探索的关键步骤之一.本文综述2008 年至今开展的火星盐类类比研究进展.  相似文献   

10.
空间天气指太阳、行星际空间和地球空间(地球磁层、电离层和热层)的状态及其变化,它能够影响到天基和地基技术系统的运行和可靠性,危及人类的生存.空间天气计划包括观测和资料分析,研究和数值建模,预报和服务.本文评述了空间天气研究的主要科学问题.  相似文献   

11.
Drake MJ  Righter K 《Nature》2002,416(6876):39-44
A long-standing question in the planetary sciences asks what the Earth is made of. For historical reasons, volatile-depleted primitive materials similar to current chondritic meteorites were long considered to provide the 'building blocks' of the terrestrial planets. But material from the Earth, Mars, comets and various meteorites have Mg/Si and Al/Si ratios, oxygen-isotope ratios, osmium-isotope ratios and D/H, Ar/H2O and Kr/Xe ratios such that no primitive material similar to the Earth's mantle is currently represented in our meteorite collections. The 'building blocks' of the Earth must instead be composed of unsampled 'Earth chondrite' or 'Earth achondrite'.  相似文献   

12.
Silicon in the Earth's core   总被引:2,自引:0,他引:2  
Georg RB  Halliday AN  Schauble EA  Reynolds BC 《Nature》2007,447(7148):1102-1106
Small isotopic differences between the silicate minerals in planets may have developed as a result of processes associated with core formation, or from evaporative losses during accretion as the planets were built up. Basalts from the Earth and the Moon do indeed appear to have iron isotopic compositions that are slightly heavy relative to those from Mars, Vesta and primitive undifferentiated meteorites (chondrites). Explanations for these differences have included evaporation during the 'giant impact' that created the Moon (when a Mars-sized body collided with the young Earth). However, lithium and magnesium, lighter elements with comparable volatility, reveal no such differences, rendering evaporation unlikely as an explanation. Here we show that the silicon isotopic compositions of basaltic rocks from the Earth and the Moon are also distinctly heavy. A likely cause is that silicon is one of the light elements in the Earth's core. We show that both the direction and magnitude of the silicon isotopic effect are in accord with current theory based on the stiffness of bonding in metal and silicate. The similar isotopic composition of the bulk silicate Earth and the Moon is consistent with the recent proposal that there was large-scale isotopic equilibration during the giant impact. We conclude that Si was already incorporated as a light element in the Earth's core before the Moon formed.  相似文献   

13.
Mars' core and magnetism.   总被引:6,自引:0,他引:6  
D J Stevenson 《Nature》2001,412(6843):214-219
The detection of strongly magnetized ancient crust on Mars is one of the most surprising outcomes of recent Mars exploration, and provides important insight about the history and nature of the martian core. The iron-rich core probably formed during the hot accretion of Mars approximately 4.5 billion years ago and subsequently cooled at a rate dictated by the overlying mantle. A core dynamo operated much like Earth's current dynamo, but was probably limited in duration to several hundred million years. The early demise of the dynamo could have arisen through a change in the cooling rate of the mantle, or even a switch in convective style that led to mantle heating. Presently, Mars probably has a liquid, conductive outer core and might have a solid inner core like Earth.  相似文献   

14.
Partitioning of oxygen during core formation on the Earth and Mars   总被引:1,自引:0,他引:1  
Rubie DC  Gessmann CK  Frost DJ 《Nature》2004,429(6987):58-61
Core formation on the Earth and Mars involved the physical separation of metal and silicate, most probably in deep magma oceans. Although core-formation models explain many aspects of mantle geochemistry, they have not accounted for the large differences observed between the compositions of the mantles of the Earth (approximately 8 wt% FeO) and Mars (approximately 18 wt% FeO) or the smaller mass fraction of the martian core. Here we explain these differences as a consequence of the solubility of oxygen in liquid iron-alloy increasing with increasing temperature. We assume that the Earth and Mars both accreted from oxidized chondritic material. In a terrestrial magma ocean, 1,200-2,000 km deep, high temperatures resulted in the extraction of FeO from the silicate magma ocean owing to high solubility of oxygen in the metal. Lower temperatures of a martian magma ocean resulted in little or no extraction of FeO from the mantle, which thus remains FeO-rich. The FeO extracted from the Earth's magma ocean may have contributed to chemical heterogeneities in the lowermost mantle, a FeO-rich D" layer and the light element budget of the core.  相似文献   

15.
Murthy VR  van Westrenen W  Fei Y 《Nature》2003,423(6936):163-165
The hypothesis that (40)K may be a significant radioactive heat source in the Earth's core was proposed on theoretical grounds over three decades ago, but experiments have provided only ambiguous and contradictory evidence for the solubility of potassium in iron-rich alloys. The existence of such radioactive heat in the core would have important implications for our understanding of the thermal evolution of the Earth and global processes such as the generation of the geomagnetic field, the core-mantle boundary heat flux and the time of formation of the inner core. Here we provide experimental evidence to show that the ambiguous results obtained from earlier experiments are probably due to previously unrecognized experimental and analytical difficulties. The high-pressure, high-temperature data presented here show conclusively that potassium enters iron sulphide melts in a strongly temperature-dependent fashion and that (40)K can serve as a substantial heat source in the cores of the Earth and Mars.  相似文献   

16.
Halliday AN 《Nature》2004,427(6974):505-509
The degree to which efficient mixing of new material or losses of earlier accreted material to space characterize the growth of Earth-like planets is poorly constrained and probably changed with time. These processes can be studied by parallel modelling of data from different radiogenic isotope systems. The tungsten isotope composition of the silicate Earth yields a model timescale for accretion that is faster than current estimates based on terrestrial lead and xenon isotope data and strontium, tungsten and lead data for lunar samples. A probable explanation for this is that impacting core material did not always mix efficiently with the silicate portions of the Earth before being added to the Earth's core. Furthermore, tungsten and strontium isotope compositions of lunar samples provide evidence that the Moon-forming impacting protoplanet Theia was probably more like Mars, with a volatile-rich, oxidized mantle. Impact-driven erosion was probably a significant contributor to the variations in moderately volatile element abundance and oxidation found among the terrestrial planets.  相似文献   

17.
Hydrogen radicals are produced in the martian atmosphere by the photolysis of water vapour and subsequently initiate catalytic cycles that recycle carbon dioxide from its photolysis product carbon monoxide. These processes provide a qualitative explanation for the stability of the atmosphere of Mars, which contains 95 per cent carbon dioxide. Balancing carbon dioxide production and loss based on our current understanding of the gas-phase chemistry in the martian atmosphere has, however, proven to be difficult. Interactions between gaseous chemical species and ice cloud particles have been shown to be key factors in the loss of polar ozone observed in the Earth's stratosphere, and may significantly perturb the chemistry of the Earth's upper troposphere. Water-ice clouds are also commonly observed in the atmosphere of Mars and it has been suggested previously that heterogeneous chemistry could have an important impact on the composition of the martian atmosphere. Here we use a state-of-the-art general circulation model together with new observations of the martian ozone layer to show that model simulations that include chemical reactions occurring on ice clouds lead to much improved quantitative agreement with observed martian ozone levels in comparison with model simulations based on gas-phase chemistry alone. Ozone is readily destroyed by hydrogen radicals and is therefore a sensitive tracer of the chemistry that regulates the atmosphere of Mars. Our results suggest that heterogeneous chemistry on ice clouds plays an important role in controlling the stability and composition of the martian atmosphere.  相似文献   

18.
 火星上是否有水以及水的储藏位置和规模,不仅是一个科学问题,更与未来载人登陆火星和火星移民密切相关。作为太阳系中与地球最为相似的行星,火星表面同样覆盖了厚厚的沉积物,但这些沉积物之下究竟有什么,对人类来说一直是个谜。近期,科学家发现,火星中纬度地区的地下储藏着大量纯净的水冰。本文评论火星地下冰川这一发现的意义,讨论了科学家究竟发现了什么、如何证明观测到的物质确实是地下冰层、这些冰层是如何形成的、冰层所记录的历史等相关问题,并展望了未来火星探测中如何利用这些水冰资源。  相似文献   

19.
Mauk BH  Clarke JT  Grodent D  Waite JH  Paranicas CP  Williams DJ 《Nature》2002,415(6875):1003-1005
Energetic electrons and ions that are trapped in Earth's magnetosphere can suddenly be accelerated towards the planet. Some dynamic features of Earth's aurora (the northern and southern lights) are created by the fraction of these injected particles that travels along magnetic field lines and hits the upper atmosphere. Jupiter's aurora appears similar to Earth's in some respects; both appear as large ovals circling the poles and both show transient events. But the magnetospheres of Jupiter and Earth are so different---particularly in the way they are powered---that it is not known whether the magnetospheric drivers of Earth's aurora also cause them on Jupiter. Here we show a direct relationship between Earth-like injections of electrons in Jupiter's magnetosphere and a transient auroral feature in Jupiter's polar region. This relationship is remarkably similar to what happens at Earth, and therefore suggests that despite the large differences between planetary magnetospheres, some processes that generate aurorae are the same throughout the Solar System.  相似文献   

20.
Accretion of the Earth and segregation of its core   总被引:1,自引:0,他引:1  
Wood BJ  Walter MJ  Wade J 《Nature》2006,441(7095):825-833
The Earth took 30-40 million years to accrete from smaller 'planetesimals'. Many of these planetesimals had metallic iron cores and during growth of the Earth this metal re-equilibrated with the Earth's silicate mantle, extracting siderophile ('iron-loving') elements into the Earth's iron-rich core. The current composition of the mantle indicates that much of the re-equilibration took place in a deep (> 400 km) molten silicate layer, or 'magma ocean', and that conditions became more oxidizing with time as the Earth grew. The high-pressure nature of the core-forming process led to the Earth's core being richer in low-atomic-number elements, notably silicon and possibly oxygen, than the cores of the smaller planetesimal building blocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号