首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Singlet-triplet energy gaps in cyclopenta-2,4-dienylidene, as well as its 2- or 3-halogenated derivatives, are compared and contrasted with their sila, germa, stana, and plumba analogues; at HF/6-31G* and B3LYP/ 6-311++G(3df, 2p) levels of theory. Energy gaps (ΔGt-s), between triplet (t) and singlet (s) states, appear linearly proportional to: (i) the size of the group 14 divalent element (M = C, Si, Ge, Sn and Pb), (ii) the angle ∠C-M-C, and (iii) the ΔG(LUMO-HOMO) of the singlet state involved. The magnitude of ΔGt-s, for each 2- and/or 3-substituted species studied, increases with an order of: carbenes < silylenes < germylenes < stanylenes < plumbylenes. This order reverses for the barriers of the ring puckering. The puckering occurs with more ease for every singlet, compared to its corresponding triplet form.Regardless of the group 14 element (M) employed, every 3-halo-substituted species is more stable than the corresponding 2-halo-substituted isomer. For M = Pb, Sn and/or Ge; 3-halo-substituted species have higher ΔGt-s than their corresponding 2-halo-substituted analogues. For M = Si, similar ΔGt-s are found for 2- and 3-halogenated isomers. For M = C, 3-halo-substituted species have lower ΔGt-s than their corresponding 2-halo-substituted analogues.Every cyclic singlet has a larger ∠C-M-C angle, than its corresponding cyclic triplet state, except for 3-halosilacyclopenta-2,4-dienylidenes where triplet has a larger ∠C-M-C angle than its corresponding singlet state.  相似文献   

2.
Four ground state triplet silylenes are found among 30 possible silylenic XHSi3 structures (X = H, F, Cl and Br), at seven ab initio and DFT levels including: B3LYP/6-311++G∗∗, HF/6-311++G∗∗, MP3/6-311G, MP2/6-311+G∗∗, MP4(SDTQ)/6-311++G∗∗, QCISD(T)/6-311++G∗∗ and CCSD(T)/6-311++G∗∗. The latter six methods indicate that the triplet states of 3-flouro-1,2,3-trisilapropadienylidene, 1-chloro-1,2,3-trisilapropargylene and 3-chloro-1,2,3-trisilapropargylene are energy minima. These triplets appear more stable than their corresponding singlet states which cannot even exist for showing negative force constants. Also, triplet state of 1-flouro-1,2,3-trisilapropargylene is possibly accessible for being an energy minimum, since its corresponding singlet state is not a real isomer. Some discrepancies are observed between energetic and/or structural results of DFT vs. ab initio data.  相似文献   

3.
Ab initio calculations with full electron correlation by the perturbation method to second order and hybrid density functional theory calculations by the B3LYP method utilizing the 6-31G(d), 6-311+G(d, p), and 6-311+G(2d, 2p) basis sets have been carried out for the XNCO and XOCN (X = H, F, Cl, Br) molecules. From these calculations, force constants, vibrational frequencies, infrared intensities, Raman activities, depolarization ratios, and structural parameters have been determined and compared to the experimental quantities when available. By combining previously reported rotational constants for HNCO, ClNCO and BrNCO with the ab initio MP2/6-311+G(d, p) predicted structural values, adjusted r0 parameters have been obtained. The r0 values for BrNCO are: r(BrN) = 1.857(5); r(NC) = 1.228(5); r(CO) = 1.161(5) Å; BrNC = 117.5(5) and NCO = 172.3(5)°. For ClNCO the determined r0 parameters are in excellent agreement with the previously determine rs values, whereas those for HNCO the HNC angle is larger with a value of 126.3(5)° compared to the previous reported value of 123.9(17)°. However, considering the relatively large uncertainty in the value given initially the two results are in near agreement. Structural parameters are also estimated for FNCO and XOCN (X = H, F, Cl, Br). The centrifugal distortion constants have been calculated and are compared to the experimentally (XNCO: X = H, Cl, Br) determined values. Predicted values for the barriers of linearity are given for both the XNCO (X = H, F, Cl, Br) molecules and the results were compared to the corresponding isothiocyanate molecules. The predicted frequencies for the fundamentals of the XNCO molecules compare favorably to the experimental values but some of the predicted intensities differ significantly from those in the observed spectra. The two OCN bends for HOCN have been assigned and the frequencies for the two corresponding fundamentals of DOCN are predicted.  相似文献   

4.
The reaction of VOF3 with (C2H5)4NF, (CH3)4NCl and (C4H9)4NBr salts in anhydrous CH3CN produced new complexes with the anion general formula [VOF3X] in that (X = F, Cl, Br). These were characterized by elemental analysis, IR, UV/Visible and 19F NMR spectroscopy. The optimized geometries and frequencies of the stationary point are calculated at the B3LYP/6-311G level of theory. Theoretical results showed that the VX (X = F, Cl, Br) bond length values for the [VOF3X] in compounds 1-3 are 1.8247, 2.4031 and 2.5595 Å, respectively. Also, the VF5 bond length values in [VOF3X] are 1.824, 1.812 and 1.802 Å, respectively. These results reveal that the bond order for VX bonds decrease from compounds 1 to 3, while for VF5 bonds, the bond orders increase. It can be concluded that the decrease of VX bonds lengths and the increase of VF5 bond lengths in compounds 1-3 result from the increase of the hyperconjugation from compounds 1 to 3. Harmonic vibrational frequencies and infrared intensities for VOF4, VOF3Cl and VOF3Br are studied by means of theoretical and experimental methods. The calculated frequencies are in reasonable agreement with the experiment values. These data can be used in models of phosphoryl transfer enzymes because vanadate can often bind to phosphoryl transfer enzymes to form a trigonal-bipyramidal structure at the active site.  相似文献   

5.
The density functional theory calculations were used to study the influence of the substituent at P on the oxidative addition of PhBr to Pd(PX3)2 and Pd(X2PCH2CH2PX2) where X = Me, H, Cl. It was shown that the Cipso-Br activation energy by Pd(PX3)2 correlates well with the rigidity of the X3P-Pd-PX3 angle and increases via the trend X = Cl < H < Me. The more rigid the X3P-Pd-PX3 angle is, the higher the oxidative addition barrier is. The exothermicity of this reaction also increases via the same sequence X = Cl < H < Me. The trend in the exothermicity is a result of the Pd(II)-PX3 bond strength increasing faster than the Pd(0)-PX3 bond strength upon going from X = Cl to Me. Contrary to the trend in the barrier to the oxidative addition of PhBr to Pd(PX3)2, the Cipso-Br activation energy by Pd(X2PCH2CH2PX2) decreases in the following order X = Cl > H > Me. This trend correlates well with the filled dπ orbital energy of the metal center. For a given X, the oxidative addition reaction energy was found to be more exothermic for the case of X2PCH2CH2PX2 than for the case of PX3. This effect is especially more important for the strong electron donating phosphine ligands (X = Me) than for the weak electron donating phosphine ligands (X = Cl).  相似文献   

6.
7.
(Liquid + liquid) equilibrium data are presented for four ternary systems of an alkane, or aromatic compound and ethyl(2-hydroxyethyl)dimethylammonium bis{(trifluomethyl)sulfonyl}imide (C2NTf2) at 298.15 K: [hexane + benzene + C2NTf2], [hexane + p-xylene + C2NTf2], and [hexane, or octane + m-xylene + C2NTf2]. The separation of aromatic hydrocarbons (benzene, or p-xylene, or m-xylene) from aliphatic hydrocarbons (hexane, or octane) is investigated by extraction with the ammonium ionic liquid. Selectivities and distribution ratios are discussed for these mixtures at constant temperature. The data were analysed and compared to those previously reported for other ionic liquids and especially for the system {hexane + benzene + [EMIM][NTf2]}. The nonrandom two liquid NRTL model was successfully used to correlate the experimental tie-lines and to calculate the phase compositions of the ternary systems.  相似文献   

8.
A series of Ru(II) and Ru(III) complexes of the types [RuX(CO)(EPh3)2L] (X = H, E = P; X = Cl, E = P or As) and [RuX2(EPh3)2L] (X = Cl, E = P or As; X = Br, E = As, L = monoanion of dehydroacetic acid) have been synthesized in order to explore their biological activities, such as DNA-binding and antibacterial activity. The complexes were characterized by analytical and spectroscopic techniques. The crystal and molecular structure of [RuCl2(AsPh3)2(L)] has been determined by single crystal XRD. The cyclic voltammograms of the complexes in acetonitrile displayed either quasi-reversible or irreversible redox couples based on the metal centre. The ligand, dehydroacetic acid (DHA) and its metal complexes were tested against five pathogenic bacteria. Absorption titration and cyclic voltammetric studies revealed that the complexes interact with Herring Sperm ds DNA through different binding modes to different extents.  相似文献   

9.
The synthesis of the new cyclopentadiene, C5Me4(hex)H is described and its reaction with Ru3(CO)12 to yield (C5Me4hex)2Ru2(CO)4 (hex = n-hexyl) is reported. The X-ray crystal structure of the dimer confirms the structure with bridging and terminal CO groups. Reactions of the dimer to yield (C5Me4hex)Ru(CO)2X (X = Cl, Br, I) are reported. IR, NMR and mass spectra are reported for all new compounds. The solubility of the dimer is found to be 10 times greater than that for (C5Me5)2Ru2(CO)4.  相似文献   

10.
The ligands (HL1, HL2 and HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in chloroform gave the adducts [ReX(CO)3(HL)] (1a X = Cl, R = H; 1a′ X = Br, R = H; 1b X = Cl, R = CH3; 1b′ X = Br, R = CH3; 1c X = Cl, R = Ph; 1c′ X = Br, R = Ph) in good yield. All the compounds have been characterized by elemental analysis, mass spectrometry (FAB), IR and 1H NMR spectroscopic methods, and the structures of the ligands have been elucidated by X-ray diffraction. In the case of HL1, we have tried the reaction with [ReX(CO)5] (X = Br, Cl) in toluene and we proved the formation of the adduct also by this way by the isolation of single crystals of 1a′ · ½C7H8.  相似文献   

11.
Density functional theory is used to calculate the bond dissociation energy to cleave the C60C60 bond of the paramagnetic X-C60C60-X and X-C60C60 dimers where X is F, OH, O and H. The results show that these dimers would not be stable much above room temperature and therefore cannot constitute the paramagnetic phase needed to form the observed ferromagnetism which has been shown to be stable up to 800 K. The calculated bond dissociation energies to remove an F, OH or H from a single C60 are large suggesting that they could be the source of the unpaired spin needed for the high temperature ferromagnetism.  相似文献   

12.
A density functional theory study was performed on fullerene derivatives C60X18 and C70X10 (X = H, F, Cl, and Br). The calculated results show that the lowest energy isomers are IPR-satisfying for C60X18 (X = H, F, Cl, and Br). It is found that the addition patterns of X (X = Cl and Br) are different from those of X (X = H and F) for C60, demonstrating that the stability of fullerene derivatives is partly attributed to the steric repulsion and electronegativity of added atoms. However, the lowest energy isomers are IPR-violating for C70X10 (X = H, F, and Cl), suggesting that many more fullerene derivatives may violate the isolated pentagon rule.  相似文献   

13.
New experimental results on perfluoroalkylation of C60 and C70 with the use of RfI (Rf = CF3, C2F5, n-C3F7, n-C4F9, and n-C6F13), along with a critical overview of the existing synthetic methods, are presented. For the selected new fullerene (Rf)n compounds we report spectroscopic, electrochemical and structural data, including improved crystallographic data for the isomers of C70(C2F5)10 and C60(C2F5)10, and the first X-ray structural data for the dodecasubstituted perfluoethylated C70 fullerene, C70(C2F5)12, which possesses unprecedented addition pattern.  相似文献   

14.
Crystal structure of BaMg2Si2O7 was determined and refined by a combined powder X-ray and neutron Rietveld method (monoclinic, C2/c, no. 15, Z=8, a=7.24553(8) Å, b=12.71376(14) Å, c=13.74813(15) Å, β=90.2107(8)°, V=1266.44(2) Å3; Rp/Rwp=3.38%/4.77%). The structure contains a single crystallographic type of Ba atom coordinated to eight O atoms with C1 (1) site symmetry. Under 325-nm excitation Ba0.98Eu0.02Mg2Si2O7 exhibits an asymmetric emission band around 402 nm. The asymmetric shape of the emission band is likely associated with a small electron-phonon coupling in BaMg2Si2O7. The integrated intensity of the emission band was observed to remain constant over the temperature range 4.2-300 K.  相似文献   

15.
Low-temperature heat capacities of the compound Na(C4H7O5)·H2O(s) have been measured with an automated adiabatic calorimeter. A solid-solid phase transition and dehydration occur at 290-318 K and 367-373 K, respectively. The enthalpy and entropy of the solid-solid transition are ΔtransHm = (5.75 ± 0.01) kJ mol−1 and ΔtransSm = (18.47 ± 0.02) J K−1 mol−1. The enthalpy and entropy of the dehydration are ΔdHm = (15.35 ± 0.03) kJ mol−1 and ΔdSm = (41.35 ± 0.08) J K−1 mol−1. Experimental values of heat capacities for the solids (I and II) and the solid-liquid mixture (III) have been fitted to polynomial equations.  相似文献   

16.
Reactions of bis(pyridin-2-yl)ketone with tin tetrahalides, SnX4 (X = Cl or Br), or organotin trichlorides, RSnCl3 (R = Ph, Bu or CH2CH2CO2Me), in ROH (R = Me or Et) readily produces RObis(pyridin-2-yl)methanolato)tin complexes, [5: RO(py)2C(OSnX3)] (5: R,X = Me,Cl; Et,Cl; Et,Br) or [6: MeO(py)2C(OSnCl2R)] (R = Ph, Bu, CH2CH2CO2Me). In addition, halide exchange reaction between SnI4 and (5: R,X = Me,Cl) occurred to give (5: R,X = Me,I). The crystal structures of six tin(IV) derivatives indicated, in all cases, a monoanionic tridentate ligand, [RO(py)2C(O)-N,O,N], arranged in a fac manner about a distorted octahedral tin atom. The Sn–O and Sn–N bonds lengths do not show much variation amongst the six complexes despite the differences in the other ligands at tin.  相似文献   

17.
A quite general approach for the preparation of η5-and η6-cyclichydrocarbon platinum group metal complexes is reported. The dinuclear arene ruthenium complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, C10H14 and C6Me6) and η5-pentamethylcyclopentadienyl rhodium and iridium complexes [(η6-C5Me5)M(μ-Cl)Cl]2 (M = Rh, Ir) react with 2 equiv. of 4-amino-3,5-di-pyridyltriazole (dpt-NH2) in presence of NH4PF6 to afford the corresponding mononuclear complexes of the type [(η6-arene)Ru(dpt-NH2)Cl]PF6 {arene = C10H14 (1), C6H6 (2) and C6Me6 (3)} and [(η6-C5Me5)M(dpt-NH2)Cl]PF6 {M = Rh (4), Ir (5)}. However, the mononuclear η5-cyclopentadienyl analogues such as [(η5-C5H5)Ru(PPh3)2Cl], [(η5-C5H5)Os(PPh3)2Br], [(η5-C5Me5)Ru(PPh3)2Cl] and [(η5-C9H7)Ru(PPh3)2Cl] complexes react in presence of 1 equiv. of dpt-NH2 and 1 equiv. of NH4PF6 in methanol yielded mononuclear complexes [(η5-C5H5)Ru(PPh3)(dpt-NH2)]PF6 (6), [(η5-C5H5)Os(PPh3)(dpt-NH2)]PF6 (7), [(η5-C5Me5)Ru(PPh3)(dpt-NH2)]PF6 (8) and [(η5-C9H7)Ru(PPh3)(dpt-NH2)]PF6 (9), respectively. These compounds have been totally characterized by IR, NMR and mass spectrometry. The molecular structures of 4 and 6 have been established by single crystal X-ray diffraction and some of the representative complexes have also been studied by UV–Vis spectroscopy.  相似文献   

18.
The mechanisms for the reaction of CF3O2 with atomic hydrogen were studied with ab initio and DFT methods. The results reveal that the reaction could take place on the singlet and triplet potential energy surfaces (PES). For the singlet PES, addition/elimination and substitution mechanisms are determined, and the former one is dominant. The most favorable channel involves the association of CF3O2 with H atom to form CF3O2H (IM1) via a barrierless process, and then the O–O bond dissociates to give out CF3O + OH. The secondary product might be CF3OH + O, formed from the O–O bond cleavage in the initial adduct CF3O(H)O (IM2). Other products such as CF3 + O2H, HF + CF2O2 and O2 + CHF3 are of no importances because of higher barriers. On the triplet PES, only substitution mechanism is located. With higher barriers involving, the channels on the triplet PES could be negligible compared with the channels on the singlet PES.  相似文献   

19.
Isothermal depolymerization of the two polymers of C60, i.e. of 1D orthorhombic phase (O) and of “dimer state” (DS) have been studied by means of Infra-red spectroscopy in the temperature ranges 383-423 and 453-503 K, respectively. Differential Scanning Calorimetry (DSC) has been used to obtained depolymerization polytherms for O-phase and DS. Standard set of reaction models have been applied to describe depolymerization behavior of O-phase and DS. The choice of the reaction models was based primarily on the isotherms. Several models however demonstrated almost equal goodness of fit and were statistically indistinguishable. In this case we looked for simpler/more realistic mechanistic model of the reaction. For DS the first-order expression (Mampel equation) with the activation energy Ea = 134 ± 7 kJ mol−1 and preexponential factor ln(A/s−1) = 30.6 ± 2.1, fitted the isothermal data. This activation energy was nearly the same as the activation energy of the solid-state reaction of dimerization of C60 reported in the literature. This made the enthalpy of depolymerization close to zero in accord with the DSC data on depolymerization of DS. Mampel equation gave the best fit to the polythermal data with Ea = 153 kJ mol−1 and preexponential factor ln(A/s−1) = 35.8. For O-phase two reasonable reaction models, i.e. Mampel equation and “contracting spheres” model equally fitted to the isothermal data with Ea = 196 ± 2 and 194 ± 8 kJ mol−1, respectively and ln(A/s−1) = 39.1 ± 0.5 and 37.4 ± 0.2, respectively and to polythermal data with Ea = 163 and 170 kJ mol−1, respectively and ln(A/s−1) = 32.5 and 29.5, respectively.  相似文献   

20.
The reactions of indium monohalides, InX with haloforms, CHX3, in 1,4-dioxane (diox), produce the dioxane adducts of dihalogeno-dihalogenomethyl-indium(III), X2In(diox)nCHX2 (X = Cl, Br, n = 1; X = I, n = 2) compounds. The ionic derivative [(C2H5)4N] [Cl3InCHCl2] was prepared and its crystal structure determined by X-ray means. The reactions of the X2In(diox)nCHX2 compounds are significantly different from those of the related X2InCH2X compounds. The dihalogenomethyl derivatives react with strong electrophiles suggesting dihalogenomethyl substituents of mild nucleophilic character, while the carbon atoms in the halogenomethyl derivatives are electrophilic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号