首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a calorimetric sensor utilizing a thermoelectric device supported on a planar alumina substrate. By using a highly selective carbon monoxide (CO) oxidation catalyst and a non-selective platinum (Pt) catalyst, the device can be built to detect either CO or hydrocarbons with high selectivity. The CO oxidation catalyst comprises lead-modified platinum and exhibits excellent selectivity over the 200–400 °C temperature range. The thermoelectric device consists of two thick film junctions made of niobium pentoxide (Nb2O5)-doped titanium dioxide (TiO2) and a lithiated nickel (Ni), which are supported on a planar alumina substrate. The thermocouple detects the difference in temperature due to different catalytic reactions over the two junctions and shows a high output signal because of the high Seebeck coefficient of Nb2O5-doped TiO2 (−400 μV/°C). In gas bench tests, the sensor has a linear output of 0–2.75 mV over 0–1000 ppm of propylene and a response time of 2.5 s (at 90% of amplitude) at a gas temperature of 350 °C. An engine dynamometer evaluation shows that the response of the sensor parallels the change in CO and hydrocarbon constituent concentrations when the engine air-to-fuel ratio is varied.  相似文献   

2.
Ultrafine SmFe0.7Co0.3O3 powder, prepared by a sol–gel method, shows a single-phase orthogonal perovskite structure. The influence of annealing temperature upon its crystal cell volume, microstructure, electrical and ethanol-sensing properties was investigated in detail. When the annealing temperature increases from 600 to 950 °C, the unit cell volume of the SmFe0.7Co0.3O3 sample reduces, and its average grain size increases. When the annealing temperature increases from 600 to 850 °C, the optimal working temperature and response to ethanol of the SmFe0.7Co0.3O3 sensor increase, and the response–recovery time shortens. But when the annealing temperature further increases from 850 to 950 °C, there are decreases of the optimal working temperature and sensor response, and the response–recovery time is prolonged. The results indicate that, as for sensor response, its optimal annealing temperature is about 850 °C, and the sensor based on SmFe0.7Co0.3O3 annealed at 850 °C shows the highest response S = 80.8 to 300 ppm ethanol gas, and it has the best response–recovery and selectivity characteristics. When the ethanol concentration is as low as 500 ppm, the curve of its optimal response versus concentration is nearly linear. Meanwhile, the influence mechanisms of annealing temperature upon the conductance, the optimal working temperature and sensor response for SmFe0.7Co0.3O3 were studied.  相似文献   

3.
The ceramic powder prepared from the mixture of Mn3O4 and La2O3 have been characterized for NTC behavior and the same have been used as CT2C (continuous thermocouple) sensor in the form of a thin metal cable to detect over-heating. These materials have mega ohm resistance at room temperature and showed exponential drop in resistance with the rise in temperature over a temperature range of 100–400 °C. It has been observed that as the concentration of La2O3 increases from 0 to 10% the NTC behavior drops from (400–260 °C) ±10%. The material was pressed into pellets and sintered at 700 °C for 3 h resulting in good bonding strength. Electrical characterization of the material was done by measuring the resistance over a temperature range of 100–400 °C. The material showed reproducible NTC characteristics over the temperature range 400, 370, 340, 280, and 260 °C with decreasing thermistor constant values (B = 9588, 9210, 8500, 5170, 3330 K−1) and activation energy (ΔE = 826, 794, 733, 445, 287 meV), respectively. The decrease in activation energy of the ceramic powder with increase in La2O3 concentration makes it possible to fabricate thermal sensors which can be used in different temperature ranges. The microstructure was studied using SEM and evidence of a sintered body with grain size around 1 μm was observed in the material. XRD analysis indicated the single-phase tetragonal structure of the ceramic material. The process of using this ceramic material for fabrication of 10 ft continuous fire wire sensor has been explained.  相似文献   

4.
TiO2 thin films were prepared by spin-coating of a Ti butoxide-derived sol onto oxidized silicon wafers, followed by a heat-treatment at temperatures ranging from 500 to 800 °C. The film thickness after heat-treatment at 500 °C was 50 nm. Pt addition, with a Pt:Ti nominal atomic ratio ranging from 0.01 to 0.1, was achieved by adding solutions of Pt(II) acetylacetonate to the TiO2 sols. The thin films were investigated by X-ray diffraction, evidencing that Pt promoted the structural transformation of the starting anatase phase of TiO2 to rutile, with a more enhanced effect with increasing the Pt concentration and/or the heat-treatment temperature. High-resolution transmission electron microscopy evidenced that, when a Pt:Ti atomic ratio of 0.05 and a heat treatment at 500 °C were used, the TiO2 contained both anatase and rutile phases and interspersed Pt nanocrystals (2–3 nm). This result allowed attributing the structural transformation in TiO2 to the strain created by the Pt nanocrystals—a conclusion which was further corroborated by the observation that Pd-modified films, prepared under similar conditions, were only composed of anatase TiO2 and did not contain any Pd nanocrystals. The films heat-treated at 500 °C were able to withstand a full microelectronic processing sequence, including dry etching for gas sensors sensitive area definition, Ti/Pt contact formation, and heater processing on the backside of the sensor substrates. H2 gas-sensing tests evidenced that the anatase TiO2 phase was much more sensitive than the rutile one. The presence of Pt further enhanced the gas-sensing properties, lowering the optimum sensor operation temperature to about 330 °C and allowing for the detection of a minimum H2 concentration of about 1000 ppm.  相似文献   

5.
Potentiometric cell, Au/LiCoO2 5 m/o Co3O4/Li2.88PO3.73N0.14/Li2CO3/Au, has been fabricated and investigated for monitoring CO2 gas. A LiCoO2–Co3O4 mixture was used as the solid-state reference electrode instead of a reference gas. The idea is to keep the lithium activity constant on the reference side using thermodynamic equilibrium at a given temperature. The thermodynamic stability of the reference electrode was studied from the phase stability diagram of Li–Co–C–O system. The Gibb’s free energy of formation of LiCoO2 was estimated at 500°C from the measured value of the cell emf. The sensors showed good reversibility and fast response toward changing CO2 concentrations from 200 to 3000 ppm. The emf values were found to follow a logarithmic Nernstian behavior in the 400–500°C temperature range. CH4 gas did not show any interference effect. Humidity and CO gas decreased the emf values of the sensor slightly. NO and NO2 gases affect this sensor significantly at low temperatures. However, increased operating temperature seems to reduce the interference.  相似文献   

6.
I.  S.  A.  S.  A.  Ram  A.   《Sensors and actuators. B, Chemical》2008,130(2):882-888
Nanocrystalline gamma iron oxide (γ-Fe2O3) has been synthesized at room temperature through sonication-assisted precipitation technique. The key in obtaining γ-Fe2O3 at room temperature lies in exploiting high-power ultrasound (600 W). The gas-sensing properties to n-butane of pure γ-Fe2O3 were investigated by studying the electrical properties of the sensor elements fabricated from the synthesized powder. The maximum response (90%) of the sensor to 1000 ppm n-butane at 300 °C can be explained on the basis of catalytic activity of the nanocrystallites. The response and recovery time of the sensor to 1000 ppm n-butane were less than 12 s and 120 s, respectively.  相似文献   

7.
The barium–strontium–titanate (BST, Ba0.64Sr0.36TiO3) thin films have been prepared by the sol–gel method on a platinum-coated silicon substrate. The resulting thin films show very good dielectric and pyroelectric properties. The dielectric constant and dissipation factor for Ba0.64Sr0.36TiO3 thin film at a frequency of 200 Hz were 592 and 0.028, respectively. The dependence of the capacitance as a function of the voltage shows a strongly non-linear character, and two peaks characterizing spontaneous polarization switching can be clearly seen in this curve, indicating that the films have a ferroelectric nature. The capacitance changed from 495 to 1108 pF with the applied voltage in the −5 to +5 V range at a frequency of 100 kHz. The peak pyroelectric coefficient at 30 °C is 1080 μC/m2 K. The pyroelectric coefficient at room temperature (25 °C) is 1860 μC/m2 K, and the figure-of-merit of this film is 37.4 μC/m3 K. The high pyroelectric coefficients and the greater figures-of-merit of Ba0.64Sr0.36TiO3 thin films make it possible to be used for thermal infrared detection and imaging.  相似文献   

8.
Solid-electrolyte-based electrochemical SOx sensors fabricated with MgO-stabilized zirconia and Li2SO4---CaSO4---SiO2 (4:4:2 in molar ratio) exhibit fairly good sensing characteristics for 2–200 ppm SO2 in air at 600–750 °C, with the e.m.f. responses following the Nernst equation for the two-electron reduction of SO2. The 90% response and 90% recovery times to 20 ppm SO2 are 10 s and 7 min at 650 °C, and 10 s and 3 min at 700 °C, respectively. It is further found that the sensor exhibits excellent selectivity to SOx in the coexistence of CO2 and NOx, and good long-term stability. The sensor is simple in structure, easy to prepare, and quite tough chemically and mechanically. These features should ensure practical use for this SOx sensor.  相似文献   

9.
CuO/SnO2 heterostructures as well as SnO2(CuO) polycrystalline films have been studied for H2S sensing. Gas sensing properties of these materials have been compared in conditions: 25–300 ppm H2S in N2 at 100–250°C. A shorter response time of the heterostructures as compared to that of the SnO2(CuO) films has been found. It is suggested that the improvement of dynamic sensor properties of SnO2/CuO heterostructures is caused by the localization of electrical barrier between CuO and SnO2 layers.  相似文献   

10.
Pt-loaded metal oxides [WO3/ZrO2, MOx/TiO2 (MOx = WO3, MoO3, V2O5), WO3 and TiO2] equipped with interdigital Au electrodes have been tested as a NOx (NO and NO2) gas sensor at 500 °C. The impedance value at 4 Hz was used as a sensing signal. Among the samples tested, Pt-WO3/TiO2 showed the highest sensor response magnitude to NO. The sensor was found to respond consistently and rapidly to change in concentration of NO and NO2 in the oxygen rich and moist gas mixture at 500 °C. The 90% response and 90% recovery times were as short as less than 5–10 s. The impedance at 4 Hz of the present device was found to vary almost linearly with the logarithm of NOx (NO or NO2) concentration from 10 to 570 ppm. Pt-WO3/TiO2 showed responses to NO and NO2 of the same algebraic sign and nearly the same magnitude, while Pt/WO3 and WO3/TiO2 showed higher response to NO than NO2. The impedance at 4 Hz in the presence of NO for Pt-WO3/TiO2 was almost equal at any O2 concentration examined (1–99%), while in the case of Pt/WO3 and WO3/TiO2 the impedance increased with the oxygen concentration. The features of Pt-WO3/TiO2 are favorable as a NOx sensor that can monitor and control the NOx concentration in automotive exhaust. The effect of WO3 loading of Pt-WO3/ZrO2-based sensor is studied to discuss the role of surface W-OH sites on the NOx sensing.  相似文献   

11.
NO2 sensing properties of SnO2-based varistor-type sensors have been investigated in the temperature range of 400-650°C and in the NO2 concentration range of 15–30 ppm. Pure SnO2 exhibited a weak nonlinear IV characteristic in air, but clear nonlinearity in NO2 at 450°C. The breakdown voltage of SnO2 shifted to a high electric field upon exposure to NO2 and the magnitude of the shift was well correlated with NO2 concentration. Thus, SnO2 exhibited some sensitivity to NO2 as a varistor-type sensor. When SnO2 particles coated with a SiO2 thin film were used as a raw material for fabricating a varistor, the breakdown voltage in air was approximately the double that of pure SnO2 and the sensitivity to 15 ppm NO2 was enhanced slightly. However, the sensitivity to 30 ppm NO2 decreased. The Cr2O3-loading on SnO2 also led to an increase in the breakdown voltage in air, but the Cr2O3 addition was not effective for promoting the NO2 sensitivity under the present experimental conditions.  相似文献   

12.
This paper describes the fabrication procedure as well as the sensing properties of new hydrogen sensors using Fe2O3-based thin film. The film is deposited by the r.f. sputtering technique; its composition is Fe2O3, TiO2(5 mol%) and MgO(0–12 mol%). The conductance change of the film is examined in various test gases. The sensitivity to hydrogen gas is enhanced by treating the film in vacuum at 550 °C for 4 h and then in air at 700 °C for 2 h. The sputtered film is identified to be polycrystalline -Fe2O3 based on X-ray diffraction patterns. However, the surface layer is considered to be changed to Fe3O4 after heating in vacuum and then to γ-Fe2O3 after heating in air. The film is thus a multilayer one with a thin γ-Fe2O3 layer on a -Fe2O3 layer. The sensing mechanism is discussed based on measurements of the physical properties of the film, such as the temperature dependence of the sensor conductance, X-ray diffraction pattern, surface morphology, RBS (Rutherford back-scattering) spectrum and optical absorption spectrum.  相似文献   

13.
F.  Y.  A.  S. 《Sensors and actuators. B, Chemical》2008,130(2):625-629
In our earlier study, we reported that at 300 °C, a 2.0 wt.% CeO2-doped SnO2 sensor is highly selective to ethanol in the presence of CO and CH4 gases [F. Pourfayaz, A. Khodadadi, Y. Mortazavi, S.S. Mohajerzadeh, CeO2 doped SnO2 sensor selective to ethanol in presence of CO, LPG and CH4, Sens. Actuators B 108 (2005) 172–176]. In the present investigation, we report the influence of ambient air humidity on the ethanol selective SnO2 sensor doped with 2.0 wt.% CeO2. Maximum response to ethanol occurs at 300 °C which decreases with the relative humidity. The relative humidity was changed from 0 to 80% for different ambient air temperatures of 30, 40 and 50 °C and the response of the sensor was monitored in a 250–450 °C temperature range. As the relative humidity in 50 °C air increased from 0 to 30%, a 15% reduction in the maximum response to ethanol was observed. A further increase in the relative humidity no longer reduced the response significantly. The presence of humidity improved the sensor response to both CO and CH4 up to 350 °C after which the extent of improvement became smaller and at 450 °C was almost diminished. The sensor is shown to be quite selective to ethanol in the presence of humid air containing CO and CH4. The selectivity passes a maximum at 300 °C; however it declines at higher operating temperatures.  相似文献   

14.
Hollow SnO2 spheres were prepared in dimethylfomamide (DMF) by controlled hydrolysis of SnCl2 using newly made carbon microspheres as templates. The phase composition and morphology of the material particles were characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The gas sensing properties of sensors based on the hollow SnO2 spheres were investigated. It was found that the sensor exhibited good performances, characterized by high response, good selectivity and very short response time to dilute (C2H5)3N operating at 150 °C, especially, the response to 1 ppb (C2H5)3N attained 7.1 at 150 °C. It was noteworthy that the response to 0.1 ppm C2H5OH of the sensor was 2.7 at 250 °C.  相似文献   

15.
Thin films of Y2O3 : Eu cathodoluminescent (CL) phosphors were deposited using pulsed laser deposition using deposition temperature between 250°C and 800°C, O2 pressures between residual vacuum (2×10−5 Torr) and 6 Torr, and post annealing up to 1200° for 1 h in air. The CL efficiency of the best thin film was about one third that of the starting powder. The brightness and efficiency of the thin films improved as the deposition temperature, O2 pressure and post annealing temperature were increased, except that O2 pressures above 600 mTorr did not significantly improve the CL properties. At deposition temperatures >600°C, the surface morphology changed from a smooth film to a nodular deposit for O2 pressures >200 mTorr, with nodule dimensions ≈100 nm. Simultaneously, the CL properties improved dramatically because of enhanced optical scattering out of the thin film. Optical scattering was discussed in terms of anomalous diffraction. The CL properties also improved dramatically with high temperature post annealing. This effect was interpreted in terms of improved crystallinity and activation of the Eu. The low brightness and efficiency of thin films versus powder was affected by depletion of the Eu in the thin films owing to the deposition process.  相似文献   

16.
The paper reports the successful fabrication of ethanol gas sensors with tin-dioxide (SnO2) thin films integrated with a solid-state heater, which is realized with technologies of micro-electro-mechanical systems (MEMS), and are compatible with VLSI processes. The main sensing part with dimensions of 450×400 μm2 in this developed device is composed of a sensing SnO2 film, which is fabricated by electron-gun evaporation with proper annealing in ambient oxygen gas to yield fine particles and good structure. An integrated solid-state heater with a 4.5 μm-thick cantilever bridge (1000×500 μm2) structure is made of silicon carbide (SiC) material by MEMS technologies. The sensitivity for 1000 ppm ethanol gas reaches as high as 90 with 10 s and 2 min for the response and recovery time, respectively, at an operating temperature of 300°C. Those experimental results also exhibit a much superior performance to that of a popular commercial ethanol gas sensor TGS-822. Therefore, the developed sensor with high performance is a good candidate for some specific application in automobile to detect drink-drive limit and allows an array integration available with various films for controlling each element at separate resistance.  相似文献   

17.
In this work we study the structural properties and mechanical stress of silicon oxynitride (SiOxNy) films obtained by plasma enhanced chemical vapor deposition (PECVD) technique at low temperatures (320 °C) and report the feasibility of using this material for the fabrication of large area self-sustained grids. The films were obtained at different deposition conditions, varying the gas flow ratio between the precursor gases (N2O and SiH4) and maintaining all the other deposition parameters constant. The films were characterized by ellipsometry, by Fourier transform infrared (FT-IR) spectroscopy and by optically levered laser technique to measure the total mechanical stress. The results demonstrate that for appropriated deposition conditions, it is possible to obtain SiOxNy with very low mechanical stress, a necessary condition for the fabrication of mechanically stable thick films (up to 10 μm). Since this material (SiOxNy) is very resistant to KOH wet chemical etching it can be utilized to fabricate, by silicon substrate bulk micromachining, very large self-sustained grids and membranes, with areas up to 1 cm2 and with thickness in the 2–6 μm range. These results allied with the compatibility of the PECVD SiOxNy films deposition with the standard silicon based microelectronic processing technology makes this material promising for micro electro mechanical system (MEMS) fabrication.  相似文献   

18.
In this paper, ammonia-sensing behavior of barium strontium titanate (BST) thin films have been reported for the first time. Thin films of BST deposited by sol–gel spin coating technique have been found to show an increase in resistance when exposed to ammonia gas. The sensitivity variation was from 20 to 60%, with lowest detection limit of about 160 ppm. The films were prepared with different pre-sintering temperatures and thickness and effect of these parameters on the ammonia-sensing have been studied. The optimum temperature for operation was found to be close to 270 °C. The ammonia-sensing studies were also performed for other gases like ethanol, NO2 and CO; but the sensitivity in these cases was negligibly smaller than that in case of ammonia.  相似文献   

19.
A silicon-based SnO2 gas sensor has been fabricated for monitoring liquified petroleum gas (LPG), commonly used as town gas. The gas sensor is made by silicon IC technology together with SnOf2 thin-film processing. The whole chip with a size of 9 mm x 9 mm consists of nine sensors (three by three array). each sensor is supported by a thin membrane of SiO2/Si3N4/SiO2 layers that provides a low thermal mass and prevents heat conduction through the surrounding substrate material. Tin oxide thin film is prepared by thermal evaporation of metallic tin granules and subsequent thermal oxidation of the metallic film at 600 °C. To form the SnO2(Pt) thin film, a layer of Pt with a thickness of several tens of angstroms is sputtered onto the tin oxide film and heat treated at 500 °C in air for several hours in order to stabilize its electrical response. The fabricated SnO2(Pt) microsensors exhibit about 85 and 92% sensitivities to 5000 ppm C3H8 and 5000 ppm C4H10 (the main components of LPG) at 250 °C, respectively, and show a rapid response time of less than 5 s.  相似文献   

20.
The control of the technological steps such as calcination temperature and introduction of catalytic additives are accepted to be key points in the obtaining of improved sol–gel fabricated SnO2 thick film gas sensors with different sensitivity to NO2 and CO. In this work, after proving that the undoped material calcined at 1000°C is optimum for NO2 detection, grinding is added as third technological step for further modification of particle surface characteristics, allowing to reduce cross-sensitivity to CO. The influence of grinding on the base resistance and on the sensor signals to NO2 and CO is discussed in detail as a function of the structural differences of the sensing material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号