首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using linear programming to Decode Binary linear codes   总被引:3,自引:0,他引:3  
A new method is given for performing approximate maximum-likelihood (ML) decoding of an arbitrary binary linear code based on observations received from any discrete memoryless symmetric channel. The decoding algorithm is based on a linear programming (LP) relaxation that is defined by a factor graph or parity-check representation of the code. The resulting "LP decoder" generalizes our previous work on turbo-like codes. A precise combinatorial characterization of when the LP decoder succeeds is provided, based on pseudocodewords associated with the factor graph. Our definition of a pseudocodeword unifies other such notions known for iterative algorithms, including "stopping sets," "irreducible closed walks," "trellis cycles," "deviation sets," and "graph covers." The fractional distance d/sub frac/ of a code is introduced, which is a lower bound on the classical distance. It is shown that the efficient LP decoder will correct up to /spl lceil/d/sub frac//2/spl rceil/-1 errors and that there are codes with d/sub frac/=/spl Omega/(n/sup 1-/spl epsi//). An efficient algorithm to compute the fractional distance is presented. Experimental evidence shows a similar performance on low-density parity-check (LDPC) codes between LP decoding and the min-sum and sum-product algorithms. Methods for tightening the LP relaxation to improve performance are also provided.  相似文献   

2.
This paper presents a detailed analysis of pseudocodewords of Tanner graphs. Pseudocodewords arising on the iterative decoder's computation tree are distinguished from pseudocodewords arising on finite degree lifts. Lower bounds on the minimum pseudocodeword weight are presented for the BEC, BSC, and AWGN channel. Some structural properties of pseudocodewords are examined, and pseudocodewords and graph properties that are potentially problematic with min-sum iterative decoding are identified. An upper bound on the minimum degree lift needed to realize a particular irreducible lift-realizable pseudocodeword is given in terms of its maximal component, and it is shown that all irreducible lift-realizable pseudocodewords have components upper bounded by a finite value t that is dependent on the graph structure. Examples and different Tanner graph representations of individual codes are examined and the resulting pseudocodeword distributions and iterative decoding performances are analyzed. The results obtained provide some insights in relating the structure of the Tanner graph to the pseudocodeword distribution and suggest ways of designing Tanner graphs with good minimum pseudocodeword weight.  相似文献   

3.
We propose an augmented belief propagation (BP) decoder for low-density parity check (LDPC) codes which can be utilized on memoryless or intersymbol interference channels. The proposed method is a heuristic algorithm that eliminates a large number of pseudocodewords that can cause nonconvergence in the BP decoder. The augmented decoder is a multistage iterative decoder, where, at each stage, the original channel messages on select symbol nodes are replaced by saturated messages. The key element of the proposed method is the symbol selection process, which is based on the appropriately defined subgraphs of the code graph and/or the reliability of the information received from the channel. We demonstrate by examples that this decoder can be implemented to achieve substantial gains (compared to the standard locally-operating BP decoder) for short LDPC codes decoded on both memoryless and intersymbol interference Gaussian channels. Using the Margulis code example, we also show that the augmented decoder reduces the error floors. Finally, we discuss types of BP decoding errors and relate them to the augmented BP decoder.  相似文献   

4.
We initiate the probabilistic analysis of linear programming (LP) decoding of low-density parity-check (LDPC) codes. Specifically, we show that for a random LDPC code ensemble, the linear programming decoder of Feldman succeeds in correcting a constant fraction of errors with high probability. The fraction of correctable errors guaranteed by our analysis surpasses previous nonasymptotic results for LDPC codes, and in particular, exceeds the best previous finite-length result on LP decoding by a factor greater than ten. This improvement stems in part from our analysis of probabilistic bit-flipping channels, as opposed to adversarial channels. At the core of our analysis is a novel combinatorial characterization of LP decoding success, based on the notion of a flow on the Tanner graph of the code. An interesting by-product of our analysis is to establish the existence of ldquoprobabilistic expansionrdquo in random bipartite graphs, in which one requires only that almost every (as opposed to every) set of a certain size expands, for sets much larger than in the classical worst case setting.  相似文献   

5.
We apply the density-evolution technique to determine the thresholds of low-density parity-check (LDPC) codes when the sum-product algorithm is employed to perform joint channel-state estimation and decoding. The channel considered is the two-state noiseless/useless binary symmetric channel (BSC) block interference channel, where a block of h consecutive symbols shares the same channel state, which is either a noiseless BSC (crossover probability 0) or a useless BSC (crossover probability 1/2). The channel state is selected independently and at random from block to block, according to a known prior distribution. The threshold of the joint channel-state estimation/decoding scheme when used over such a channel is shown to be greatly superior to that of a decoder that makes no attempt to estimate the channel state. These results are also confirmed by simulation. The maximum-likelihood (ML) performance of LDPC codes when used over this channel is investigated. Lower bounds on the error exponents of regular LDPC codes, when ML decoded, are shown to be close to the random coding channel error exponent when the LDPC variable node degree is high.  相似文献   

6.
Quasi-cyclic (QC) low-density parity-check (LDPC) codes have the parity-check matrices consisting of circulant matrices. Since QC LDPC codes whose parity-check matrices consist of only circulant permutation matrices are difficult to support layered decoding and, at the same time, have a good degree distribution with respect to error correcting performance, adopting multi-weight circulant matrices to parity-check matrices is useful but it has not been much researched. In this paper, we propose a new code structure for QC LDPC codes with multi-weight circulant matrices by introducing overlapping matrices. This structure enables a system to operate on dual mode in an efficient manner, that is, a standard QC LDPC code is used when the channel is relatively good and an enhanced QC LDPC code adopting an overlapping matrix is used otherwise. We also propose a new dual mode parallel decoder which supports the layered decoding both for the standard QC LDPC codes and the enhanced QC LDPC codes. Simulation results show that QC LDPC codes with the proposed structure have considerably improved error correcting performance and decoding throughput.  相似文献   

7.
We investigate the structure of the polytope underlying the linear programming (LP) decoder introduced by Feldman, Karger, and Wainwright. We first show that for expander codes, every fractional pseudocodeword always has at least a constant fraction of nonintegral bits. We then prove that for expander codes, the active set of any fractional pseudocodeword is smaller by a constant fraction than that of any codeword. We further exploit these geometrical properties to devise an improved decoding algorithm with the same order of complexity as LP decoding that provably performs better. The method is very simple: it first applies ordinary LP decoding, and when it fails, it proceeds by guessing facets of the polytope, and then resolving the linear program on these facets. While the LP decoder succeeds only if the ML codeword has the highest likelihood over all pseudocodewords, we prove that the proposed algorithm, when applied to suitable expander codes, succeeds unless there exists a certain number of pseudocodewords, all adjacent to the ML codeword on the LP decoding polytope, and with higher likelihood than the ML codeword. We then describe an extended algorithm, still with polynomial complexity, that succeeds as long as there are at most polynomially many pseudocodewords above the ML codeword.  相似文献   

8.
We describe a family of instanton-based optimization methods developed recently for the analysis of the error floors of low-density parity-check (LDPC) codes. Instantons are the most probable configurations of the channel noise which result in decoding failures. We show that the general idea and the respective optimization technique are applicable broadly to a variety of channels, discrete or continuous, and variety of sub-optimal decoders. Specifically, we consider: iterative belief propagation (BP) decoders, Gallager type decoders, and linear programming (LP) decoders performing over the additive white Gaussian noise channel (AWGNC) and the binary symmetric channel (BSC). The instanton analysis suggests that the underlying topological structures of the most probable instanton of the same code but different channels and decoders are related to each other. Armed with this understanding of the graphical structure of the instanton and its relation to the decoding failures, we suggest a method to construct codes whose Tanner graphs are free of these structures, and thus have less significant error floors.  相似文献   

9.
We consider the decoding problem for low-density parity-check codes, and apply nonlinear programming methods. This extends previous work using linear programming (LP) to decode linear block codes. First, a multistage LP decoder based on the branch-and-bound method is proposed. This decoder makes use of the maximum-likelihood-certificate property of the LP decoder to refine the results when an error is reported. Second, we transform the original LP decoding formulation into a box-constrained quadratic programming form. Efficient linear-time parallel and serial decoding algorithms are proposed and their convergence properties are investigated. Extensive simulation studies are performed to assess the performance of the proposed decoders. It is seen that the proposed multistage LP decoder outperforms the conventional sum-product (SP) decoder considerably for low-density parity-check (LDPC) codes with short to medium block length. The proposed box-constrained quadratic programming decoder has less complexity than the SP decoder and yields much better performance for LDPC codes with regular structure.  相似文献   

10.
低密度校验码及其在图像传输中的应用   总被引:2,自引:0,他引:2  
低密度校验(Low-Density Parity-Check,LDPC)码是一种基于图和迭代译码的信道编码方案,性能非常接近Shannon极限且实现复杂度低,具有很强的纠错抗干扰能力。该文深入研究了LDPC码的编码和译码基本原理,并将其应用于移动衰落信道图像的传输中,仿真结果表明LDPC码能为图像传输带来显著的性能提高,且系统复杂度低,译码时延短。  相似文献   

11.
In linear programming (LP) decoding of a low-density parity-check (LDPC) code one minimizes a linear functional, with coefficients related to log-likelihood ratios, over a relaxation of the polytope spanned by the codewords. In order to quantify LP decoding it is important to study vertexes of the relaxed polytope, so-called pseudocodewords. We propose a technique to heuristcally create a list of pseudocodewords close to the zero codeword and their distances. Our pseudocodeword-search algorithm starts by randomly choosing configuration of the noise. The configuration is modified through a discrete number of steps. Each step consists of two substeps: one applies an LP decoder to the noise-configuration deriving a pseudocodeword, and then finds configuration of the noise equidistant from the pseudocodeword and the zero codeword. The resulting noise configuration is used as an entry for the next step. The iterations converge rapidly to a pseudocodeword neighboring the zero codeword. Repeated many times, this procedure is characterized by the distribution function of the pseudocodeword effective distance. The efficiency of the procedure is demonstrated on examples of the Tanner code and Margulis codes operating over an additive white Gaussian noise (AWGN) channel.  相似文献   

12.
In this correspondence, we first investigate some analytical aspects of the recently proposed improved decoding algorithm for low-density parity-check (LDPC) codes over the binary erasure channel (BEC). We derive a necessary and sufficient condition for the improved decoding algorithm to successfully complete decoding when the decoder is initialized to guess a predetermined number of guesses after the standard message-passing terminates at a stopping set. Furthermore, we present improved bounds on the number of bits to be guessed for successful completion of the decoding process when a stopping set is encountered. Under suitable conditions, we derive a lower bound on the number of iterations to be performed for complete decoding of the stopping set. We then present a superior, novel improved decoding algorithm for LDPC codes over the binary erasure channel (BEC). The proposed algorithm combines the observation that a considerable fraction of unsatisfied check nodes in the neighborhood of a stopping set are of degree two, and the concept of guessing bits to perform simple and intuitive graph-theoretic manipulations on the Tanner graph. The proposed decoding algorithm has a complexity similar to previous improved decoding algorithms. Finally, we present simulation results of short-length codes over BEC that demonstrate the superiority of our algorithm over previous improved decoding algorithms for a wide range of bit error rates  相似文献   

13.
The problem of low complexity linear programming (LP) decoding of low-density parity-check (LDPC) codes is considered. An iterative algorithm, similar to min-sum and belief propagation, for efficient approximate solution of this problem was proposed by Vontobel and Koetter. In this paper, the convergence rate and computational complexity of this algorithm are studied using a scheduling scheme that we propose. In particular, we are interested in obtaining a feasible vector in the LP decoding problem that is close to optimal in the following sense. The distance, normalized by the block length, between the minimum and the objective function value of this approximate solution can be made arbitrarily small. It is shown that such a feasible vector can be obtained with a computational complexity which scales linearly with the block length. Combined with previous results that have shown that the LP decoder can correct some fixed fraction of errors we conclude that this error correction can be achieved with linear computational complexity. This is achieved by first applying the iterative LP decoder that decodes the correct transmitted codeword up to an arbitrarily small fraction of erroneous bits, and then correcting the remaining errors using some standard method. These conclusions are also extended to generalized LDPC codes.   相似文献   

14.
The simplicity of decoding is one of the most important characteristics of the low density parity check (LDPC) codes. Belief propagation (BP) decoding algorithm is a well‐known decoding algorithm for LDPC codes. Most LDPC codes with long lengths have short cycles in their Tanner graphs, which reduce the performance of the BP algorithm. In this paper, we present 2 methods to improve the BP decoding algorithm for LDPC codes. In these methods, the calculation of the variable nodes is controlled by using “multiplicative correction factor” and “additive correction factor.” These factors are obtained for 2 separate channels, namely additive white Gaussian noise (AWGN) and binary symmetric channel (BSC), as 2 functions of code and channel parameters. Moreover, we use the BP‐based method in the calculation of the check nodes, which reduces the required resources. Simulation results show the proposed algorithm has better performance and lower decoding error as compared to BP and similar methods like normalized‐BP and offset‐BP algorithms.  相似文献   

15.
A forward-error correction (FEC) scheme based on low-density parity check (LDPC) codes and iterative decoding using belief propagation in code graphs is presented in this paper. We show that LDPC codes provide a significant system performance improvement with respect to the state-of-the-art FEC schemes employed in optical communications systems. We present a class of structured codes based on mutually orthogonal Latin rectangles. Such codes have high rates and can lend themselves to very low-complexity encoder/decoder implementations. The system performance is further improved by a code design that eliminates short cycles in a graph employed in iterative decoding.  相似文献   

16.
Low-density parity-check (LDPC) codes, proposed by Gallager, emerged as a class of codes which can yield very good performance on the additive white Gaussian noise channel as well as on the binary symmetric channel. LDPC codes have gained lots of importance due to their capacity achieving property and excellent performance in the noisy channel. Belief propagation (BP) algorithm and its approximations, most notably min-sum, are popular iterative decoding algorithms used for LDPC and turbo codes. The trade-off between the hardware complexity and the decoding throughput is a critical factor in the implementation of the practical decoder. This article presents introduction to LDPC codes and its various decoding algorithms followed by realisation of LDPC decoder by using simplified message passing algorithm and partially parallel decoder architecture. Simplified message passing algorithm has been proposed for trade-off between low decoding complexity and decoder performance. It greatly reduces the routing and check node complexity of the decoder. Partially parallel decoder architecture possesses high speed and reduced complexity. The improved design of the decoder possesses a maximum symbol throughput of 92.95 Mbps and a maximum of 18 decoding iterations. The article presents implementation of 9216 bits, rate-1/2, (3, 6) LDPC decoder on Xilinx XC3D3400A device from Spartan-3A DSP family.  相似文献   

17.
Low-density parity-check (LDPC) codes and convolutional Turbo codes are two of the most powerful error correcting codes that are widely used in modern communication systems. In a multi-mode baseband receiver, both LDPC and Turbo decoders may be required. However, the different decoding approaches for LDPC and Turbo codes usually lead to different hardware architectures. In this paper we propose a unified message passing algorithm for LDPC and Turbo codes and introduce a flexible soft-input soft-output (SISO) module to handle LDPC/Turbo decoding. We employ the trellis-based maximum a posteriori (MAP) algorithm as a bridge between LDPC and Turbo codes decoding. We view the LDPC code as a concatenation of n super-codes where each super-code has a simpler trellis structure so that the MAP algorithm can be easily applied to it. We propose a flexible functional unit (FFU) for MAP processing of LDPC and Turbo codes with a low hardware overhead (about 15% area and timing overhead). Based on the FFU, we propose an area-efficient flexible SISO decoder architecture to support LDPC/Turbo codes decoding. Multiple such SISO modules can be embedded into a parallel decoder for higher decoding throughput. As a case study, a flexible LDPC/Turbo decoder has been synthesized on a TSMC 90 nm CMOS technology with a core area of 3.2 mm2. The decoder can support IEEE 802.16e LDPC codes, IEEE 802.11n LDPC codes, and 3GPP LTE Turbo codes. Running at 500 MHz clock frequency, the decoder can sustain up to 600 Mbps LDPC decoding or 450 Mbps Turbo decoding.  相似文献   

18.
Design of capacity-approaching irregular low-density parity-checkcodes   总被引:7,自引:0,他引:7  
We design low-density parity-check (LDPC) codes that perform at rates extremely close to the Shannon capacity. The codes are built from highly irregular bipartite graphs with carefully chosen degree patterns on both sides. Our theoretical analysis of the codes is based on the work of Richardson and Urbanke (see ibid., vol.47, no.2, p.599-618, 2000). Assuming that the underlying communication channel is symmetric, we prove that the probability densities at the message nodes of the graph possess a certain symmetry. Using this symmetry property we then show that, under the assumption of no cycles, the message densities always converge as the number of iterations tends to infinity. Furthermore, we prove a stability condition which implies an upper bound on the fraction of errors that a belief-propagation decoder can correct when applied to a code induced from a bipartite graph with a given degree distribution. Our codes are found by optimizing the degree structure of the underlying graphs. We develop several strategies to perform this optimization. We also present some simulation results for the codes found which show that the performance of the codes is very close to the asymptotic theoretical bounds  相似文献   

19.
温娜  张平 《电讯技术》2007,47(2):31-34
LDPC码应用于OFDM系统能够得到非常好的性能,然而当信道估计信息发生错误将直接影响译码性能.为此,研究了信道估计误差对LDPC-OFDM系统性能的影响.理论和仿真得出了以下结论:信道估计误差可带来译码过程外部信息信噪比的提高或降低,由此加速成功译码或者导致译码失败.  相似文献   

20.
We consider a class of message-passing decoders for low-density parity-check (LDPC) codes whose messages are binary valued. We prove that if the channel is symmetric and all codewords are equally likely to be transmitted, an optimum decoding rule (in the sense of minimizing message error rate) should satisfy certain symmetry and isotropy conditions. Using this result, we prove that Gallager's Algorithm B achieves the optimum decoding threshold among all binary message-passing decoding algorithms for regular codes. For irregular codes, we argue that when the nodes of the message-passing decoder do not exploit knowledge of their decoding neighborhood, optimality of Gallager's Algorithm B is preserved. We also consider the problem of designing irregular LDPC codes and find a bound on the achievable rates with Gallager's Algorithm B. Using this bound, we study the case of low error-rate channels and analytically find good degree distributions for them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号