首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
传统光学显微镜的视场与空间分辨率是相互制约的,如何突破这一限制,同时能兼得高分辨率和大视场的高通量成像,成为当前显微成像技术领域的主要研究方向之一。该科学问题的突破将有助于加速科学研究、提高生产制造能力、为医疗辅助诊断提供新工具。本文介绍比较了大孔径物镜制造与曲面探测技术、扫描拼接技术、傅里叶叠层显微成像技术、宽场结构光照明技术和无透镜片上显微成像技术在内的5种高通量显微成像技术。分析了高通量显微成像技术研究的当前现状、所面临的问题以及未来的发展趋势。分析指出,计算光学成像技术正逐渐成为目前高通量显微技术的主要手段,通过计算绕过或者突破光学系统的物理限制将开辟高通量显微成像新时代。  相似文献   

2.
超分辨显微成像技术是细胞生物学中研究细胞器结构、相互作用和蛋白质功能的强大工具,其具有突破光学衍射极限的分辨能力,从纳米尺度上为细胞生物学提供了新的分析手段,对生命科学相关领域具有重大意义.然而,受衍射极限的影响,超分辨显微镜的轴向分辨率相比于横向分辨率要更难以提高,这导致实现细胞结构亚百纳米分辨率的三维成像更为困难.从受激辐射损耗显微术和单分子定位显微术这两种主流技术出发,对目前存在的多种三维成像技术进行了原理介绍和特点分析,最后对其未来发展方向进行了展望.  相似文献   

3.
提出了一种面阵摆扫型无人机载大视场高光谱成像技术,控制基于马赛克型滤光片分光的画幅式高光谱相机在翼展方向进行扫描实现大视场、高光谱分辨率成像。进行外场飞行试验,获取了像质清晰的大视场、高光谱分辨率对地观测图像,飞行作业效率为8.64 km2/h,较单相机成像,作业效率提高约3.4倍。系统光机结构简单,体积、重量优势明显,在无人机高光谱遥感方面应用前景广阔。研究成果对推动无人机载光谱成像技术向大视场、高光谱分辨率方向发展具有一定的参考价值。  相似文献   

4.
超分辨显微成像技术自诞生以来,凭借其优异的纳米级空间分辨率,已成为生命科学研究中精准揭示复杂生命现象的重要成像技术。其中,基于单分子定位的超分辨成像策略,使得定位、观察、研究单个探针分子独特的理、化、光学性能成为可能。偏振作为荧光信号的一个重要特性,近年来伴随着单分子三维取向成像技术的发展,逐步在单分子成像和超分辨领域中展示出诸多新颖且重要的应用特性。本文总结了单分子三维取向超分辨成像技术的最新进展,介绍并分析了两类主要的单分子三维取向荧光显微技术——基于荧光吸收与辐射偏振调制的单分子三维取向成像方法以及利用点扩散函数工程将单个荧光分子的三维取向信息编码到荧光图像上的成像策略。此外,还探讨了应用于活细胞或单颗粒的其他类型的超分辨取向成像技术。最后,针对单分子三维取向超分辨成像技术发展与应用前景面临的挑战,进行了总结与展望。  相似文献   

5.
杨建宇  潘雷霆  胡芬  张心正  许京军 《红外与激光工程》2017,46(11):1103008-1103008(8)
在光学显微成像领域,涌现出一批可以突破衍射极限的超分辨显微成像技术,极大地增强了人们研究亚细胞结构的能力。基于单分子定位技术的随机光学重构显微术(Stochastic Optical Reconstruction Microscopy,STORM)具有易懂的成像原理、简单的工作方式以及超高的分辨率等特点,受到越来越多的研究者青睐。首先,介绍了单分子定位技术的原理,讨论了STORM光路的搭建,阐述了二维和三维STORM超分辨显微成像原理。其次,探讨了多色STORM以及STORM与电镜关联成像现状。最后介绍了STORM技术现阶段的应用进展。  相似文献   

6.
光学显微具有对样品损伤低、可特异性成像等优点,是生物医学、生命科学、材料化学等多个领域中必不可少的成像手段。然而,传统光学显微镜多采用平行光照明整个样品,无法有效区分在焦信号和离焦背景,不具备三维层析成像能力。基于此,提出一种基于共振扫描的稀疏结构光照明三维层析显微(SSI-3DSM)技术,通过共振扫描聚焦光斑快速生成稀疏条纹结构光,利用多步相移减除背景噪声实现对待测样品的三维层析成像。相较于扫描宽场成像,该方法将轴向分辨率提升1.3倍,信背比提升12倍。此外,该技术性能稳定、成本较低、便于商业化开发,可与结构光照明、单分子定位等超分辨显微成像技术相结合以进一步提高横向分辨率。  相似文献   

7.
姚靖  余志鹏  高玉峰  叶世蔚  郑炜  赖溥祥 《红外与激光工程》2022,51(11):20220550-1-20220550-11
双光子显微成像具备高分辨率、天然层析能力和大穿透深度等特点,在活体动物成像中发挥着重要作用。然而,如何在维持高分辨率的条件下,扩大双光子的成像视场,来满足生物医学中对大规模动态反应的监测需求,一直以来都是光学显微成像领域的难点,也是科研关注的重点。综述了大视场双光子成像技术的研究进展。首先介绍了双光子显微成像系统的产生背景和设计原理,并从光学不变量的角度阐述了实现大视场双光子成像的理论基础。然后重点回顾了现有的几种大视场双光子成像方法,分别包括了扫描中继系统的边缘像差校准、高通量物镜的设计研发和自适应光学方法的使用。基于双光子成像的高时间和空间分辨特性,大视场双光子成像技术将成为一种在脑科学等需介观高分辨成像领域的应用中实现大区域动态监测的强有力的工具。  相似文献   

8.
张文辉  曹良才  金国藩 《红外与激光工程》2019,48(6):603008-0603008(17)
数字全息作为一种干涉成像方式,能够准确记录物体的相位信息,具有快速、无损、三维成像等优势,被广泛应用于生物成像与材料科学等领域。与其他光学成像方式相同,数字全息也面临分辨率与成像视场互为限制而导致空间带宽积受限的问题。研究人员提出了计算照明、计算调制与计算探测等方法,通过牺牲成像系统的时间、偏振等自由度来扩展其空间带宽积。文中分析了光学系统信息承载能力的理论基础,总结了近年来大视场高分辨率的数字全息成像技术,介绍了倾斜照明、结构光照明、随机调制照明、多位置综合孔径探测和像素超分辨等方法实现分辨率增强,以及基于角度复用的视场扩展的原理及具体实现,对不同方法进行了比较和分析,并对提高分辨率以及扩大视场的途径进行了展望。  相似文献   

9.
戴太强  高晔  马英  蔡卜磊  刘富伟  何博聆  禹洁  侯燕  郜鹏  孔亮 《红外与激光工程》2022,51(11):20220622-1-20220622-12
观察细胞器间动态相互作用,深入分析作用规律,对于揭示生理病理过程现象背后的机制具有十分重要的意义。传统光学显微镜受到由光波波长和孔径造成的衍射极限的限制,无法观测细胞器纳米级精细结构及细胞器间相互作用的动态变化规律。超分辨显微成像技术的出现为细胞器相互作用研究提供了重要手段,在深入揭示细胞器相互作用规律,阐明生理病理现象深层的机制研究中发挥了重要的作用。文中介绍了受激发射损耗(Stimulated emission depletion, STED)显微成像、结构光照明显微成像(Structured illumination microscopy, SIM)、单分子定位显微成像(Single molecule localization microscopy, SMLM)技术,并总结了这三类超分辨显微成像技术在细胞器相互作用中的应用与现状,为超分辨显微成像技术在细胞器相互作用研究中的应用提供思路拓展。最后,对超分辨显微成像技术在细胞器相互作用研究中的优势与不足进行分析总结,展望了超分辨显微成像技术在活细胞内细胞器相互作用成像中的需求发展趋势,为光学与医学及生物学的交叉融合发展提供一定的参考。  相似文献   

10.
本文从理论和实验两个角度研究单荧光分子中心定位精度与信噪比的关系,提供了一种相对简单的方法来确定基于单分子中心定位技术的超高分辨显微成像系统的分辨率。特别是,本文给出一种提高定位精度的像素重建算法,在信噪比等条件不变的情况下,该算法可有效改善单分子定位精度,从而提高超高分辨成像系统的分辨率。  相似文献   

11.
郜鹏  温凯  孙雪莹  姚保利  郑娟娟 《红外与激光工程》2019,48(6):603007-0603007(13)
定量相位显微(Quantitative Phase Microscopy,QPM)将相位成像和光学显微技术相结合,为微观物体的三维形貌、透明物体的厚度/折射率分布提供了一种快速、无损、高分辨率测量手段。然而,传统QPM成像系统依然是一个衍射受限系统,高分辨率与大视场难以同时兼顾。因此,如何在保持大视场的前提下提高成像空间分辨率是QPM亟需解决的问题之一。近年来,国内外学者采用离轴照明、散斑照明、结构照明、以及亚像元技术形成合成数值孔径,实现了QPM的大视场、高分辨成像。文中对以上QPM的分辨率增强技术进行了综述,并对不同方法的优缺点进行了分析。  相似文献   

12.
袁影  王晓蕊  吴雄雄  穆江浩  张艳 《红外与激光工程》2017,46(8):824001-0824001(7)
多孔径成像是一种融合了仿生复眼视觉的新型成像方法,具有小型化、大视场、高分辨率等多种优势,但由于每个子孔径对应的单元图像分辨率过低,导致其成像质量和视场角的提升十分有限。为了进一步提高成像分辨率和探测视场,基于压缩感知理论设计随机编码模板,并紧贴子孔径放置对入射光场进行调制,通过单次曝光记录编码后的低分辨率单元图像阵列,利用稀疏优化算法,重构所有低分辨率单元图像获得超分辨率大视场图像。理论分析和仿真实验证明了该方法的有效性。该方法不仅能兼顾大视场高分辨率成像,而且大大缩小系统等效焦距,具有薄层结构,体积小而重量轻,可为微光机电一体化系统的研制设计提供借鉴。  相似文献   

13.
随机光学重构显微(STORM)的时间和空间分辨率相互制约,难以实现活细胞的超分辨成像,且超分辨图像的后处理分析与重构算法对图像质量也有非常重要的影响。基于此,针对高密度标记与高采样率所导致的单帧图像中光斑重叠及过多的背景噪声,提出一种用于单分子定位显微成像的新型噪声校正主成分分析(NC-PCA)方法,对单分子定位显微成像采集的图像进行预处理后再进行定位重构,提高了现有定位方法的定位精度,同时还实现了重叠分子的区分定位,从而提高了生物样品的标记密度,改善了超分辨成像的时间分辨率,可为活细胞单分子定位成像提供技术支持。  相似文献   

14.
罗琳  杨建国  裘溯  金伟其  李力 《红外与激光工程》2021,50(5):20210062-1-20210062-7
热成像系统视场与空间分辨率(作用距离)的矛盾是常规成像模式难以解决的问题。多孔径热成像技术主要分为低重叠率、高重叠率和中度重叠率部分重叠成像模式。文中研究了一种视场部分重叠仿生热成像理论,利用4组红外物镜及IRFPA机芯构成了中心变分辨率4孔径分布式热成像系统,各子孔径的“并集”视场构成系统成像大视场,“交集”视场特别是中心重叠视场具有超分辨能力,从而构成空间变分辨率视觉模式,可减缓传统单孔径热成像问题;利用重叠视场可构成4目和2目近场目标场景的体视成像;通过子孔径检偏偏振片,中心视场可构成全偏振热成像模式;对角探测器分别采用长波或中波红外焦平面探测器,则可构成双色热成像模式。分析表明:这种多孔径分布式视场部分重叠仿生热成像具有仿生智能的特性,可针对感兴趣目标进行智能观测,提高复杂背景条件下的目标探测和识别能力,具有广泛的应用前景。  相似文献   

15.
超分辨定位成像是一种代表性的超分辨成像技术,弱光探测器是该技术不可或缺的组成部分。和传统的串行输出EMCCD相机相比,并行输出sCMOS相机具备成像视场大、成像速度快和读出噪声低等优点,为超分辨定位成像带来了新的机遇,可在视频速率成像和大视场成像中取得明显成效。基于sCMOS相机的超分辨定位成像技术面临着高速相机带来的海量数据,需要解决数据传输、存储和计算等多环节的问题。从超分辨成像技术及相机的发展着手,讨论了基于sCMOS相机的超分辨定位成像技术的发展现状以及面临的机遇与挑战。  相似文献   

16.
在活体细胞内研究其亚细胞结构以及细胞器和分子之间或不同分子之间的相互作用过程是目前生命科学研究的主要挑战,而发展一种能够实时检测完整细胞内多个生物分子随时空变化的单分子探测和追踪技术对于研究生命过程中的分子机制具有重要意义。设计并搭建了基于变形光栅和双螺旋点扩展函数的显微成像系统,实现了在三维空间内扩展景深和纳米定位功能,极大地扩展了成像深度。通过模拟分析,该系统在高定位精度下可实现12μm厚样品的动态探测,并实现了完整活细胞中动态粒子的实时定位和追踪。  相似文献   

17.
针对目前基于单元探测器和线列探测器的红外成像仪不能较好兼顾大视场、高空间分辨率、高温度灵敏度的问题,研制了一套基于非制冷型面阵红外探测器的大视场热红外成像仪,实现了75°大视场、0.4 mrad空间分辨率和50 m K(NEΔT)温度灵敏度指标.建立了面阵摆扫图像畸变校正模型,较好地解决了面阵摆扫图像定位精度低和图像拼接裂缝问题.研究成果对大视场面阵摆扫红外成像技术的发展具有重要的参考价值.  相似文献   

18.
针对无人机光学载荷宽视场、高分辨、轻小型、实时成像等需求,基于级联光学结构设计了一种折叠式级联相机光学系统。该光学系统主要由前置折叠同心物镜和中继转像透镜阵列组成。前置折叠同心物镜获取宽视场中间像,位于前置折叠同心物镜的同心球面上。中继转像透镜阵列对同心球面上的宽视场中间像进行视场细分、剩余像差精细校正和中继成像。优化设计得到了全视场角为109.6°、瞬时视场为7.8″,筒长仅为107 mm的折叠式级联结构相机光学系统。在全视场范围内,像面上各处光线追迹点列图的均方根半径均小于1.1μm,在空间频率230 lp/mm处,各视场调制传递函数值大于0.4,系统成像质量接近衍射极限。这种折叠式级联结构无人机机载相机光学系统视场大、分辨率高、结构紧凑,可用于无人机遥感领域,在大视场范围内获得高分辨率光学像的同时,还可实现光学系统的小型化和轻量化,具有广阔的应用前景。  相似文献   

19.
受限于制造技术,大多数仿生复眼的传感器为平 面结构,与生物复眼的曲面结构存在差异,限制了其成像质量和视场 扩展。本文设计制造了一个模拟生物复眼结构的大视场仿生复眼,将16mm CCD传感器组成2×8的曲面阵列,并 设计制造了配套的单层结构的曲面2×8透镜阵列,各透镜与传感器成 一一垂直对应关系,贴合了生物复眼的结构特征,消除 了传统复眼的离轴像差。通过引入光学自由曲面和非球面,保证了单层结构透镜阵列的成像 质量,单层透镜阵列降低了系统 的制造及装配难度。系统实现了180°×75°视场范围内无盲区的图 像采集。实验结果表明,与传统鱼眼镜头相比,本文系统畸变更小,分辨率更高。  相似文献   

20.
太赫兹(THz)波具有较高的透过性和时空分辨率等特性,在空间观测领域具有广阔的应用前景。对比于扫描成像,凝视成像具有成像性能高、速度快、结构简单等优点,而大视场成像是凝视型光学系统所必需的。因此,设计大视场凝视型THz光学系统具有重要的工程应用价值。采用反远距结构,利用Zemax设计了一款相对孔径为1、全视场角为60°的大视场THz光学成像系统。该系统采用4片式反远距共轴结构,由2片球面透镜和2片非球面透镜组成,同时透镜材料采用聚甲基戊烯(TPX)材料,整个系统具有结构紧凑、质量轻等优点。优化结果显示,各视场内的弥散斑均方根半径均小于艾里斑半径,在空间频率为12.5 lp/mm处全视场的调制传递函数(MTF)值高于0.3,表明该系统具有良好的成像质量。此外,公差分析结果表明,该系统具有较好的稳健性,加工工艺水准易于实现,符合设计要求。本设计对于THz空间大视场高分辨探测具有重要参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号