首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Wnt signaling: multiple functions in neural development   总被引:11,自引:0,他引:11  
Wnt signaling has proven to be essential for neural development at various stages and across species. Wnts are involved in morphogenesis and patterning, and their proliferation-promoting role is a key function in stem cell maintenance and the expansion of progenitor pools. Moreover, Wnt signaling is involved in differentiation processes and lineage decision events during both central and peripheral nervous system development. Additionally, several reports point to a role of Wnt signaling in axon guidance and neurite outgrowth. This article reviews and consolidates the existing evidence for the functions of Wnt signaling in neural development.Received 10 December 2004; received after revision 19 January 2005; accepted 21 January 2005  相似文献   

3.
4.
5.
The gastrointestinal epithelium is a highly organised tissue that is constantly being renewed. In order to maintain homeostasis, the balance between intestinal stem cell (ISC) self-renewal and differentiation must be carefully regulated. In this review, we describe how the intestinal stem cell niche provides a unique environment to regulate self-renewal and differentiation of ISCs. It has traditionally been believed that the mesenchymal myofibroblasts play an important role in the crosstalk between ISCs and the niche. However, recent evidence in Drosophila and in vertebrates suggests that epithelial cells also contribute to the niche. We discuss the multiple signalling pathways that are utilised to regulate stemness within the niche, including members of the Wnt, BMP and Hedgehog pathways, and how aberrations in these signals lead to disruption of the normal crypt–villus axis. Finally, we also discuss how CDX1 and inhibition of the Notch pathway are important in specifying enterocyte and goblet cell differentiation respectively.  相似文献   

6.
7.
p75NTR, the common receptor for both neurotrophins and proneurotrophins, has been widely studied because of its role in many tissues, including the nervous system. More recently, a close relationship between p75NTR expression and pluripotency has been described. p75NTR was shown to be expressed in various types of stem cells and has been used to prospectively isolate stem cells with different degrees of potency. Here, we give an overview of the current knowledge on p75NTR in stem cells, ranging from embryonic to adult stem cells, and cancer stem cells. In an attempt to address its potential role in the control of stem cell biology, the molecular mechanisms underlying p75NTR signaling in different models are also highlighted. p75NTR-mediated functions include survival, apoptosis, migration, and differentiation, and depend on cell type, (pro)neurotrophin binding, interacting transmembrane co-receptors expression, intracellular adaptor molecule availability, and post-translational modifications, such as regulated proteolytic processing. It is therefore conceivable that p75NTR can modulate cell-fate decisions through its highly ramified signaling pathways. Thus, elucidating the potential implications of p75NTR activity as well as the underlying molecular mechanisms of p75NTR will shed new light on the biology of both normal and cancer stem cells.  相似文献   

8.
9.
The highly conserved Notch signaling pathway plays pleiotropic roles during embryonic development and is important for the regulation of selfrenewing tissues. The physiological functions of this signaling cascade range from stem cell maintenance and influencing cell fate decisions of barely differentiated progenitor cells, to the induction of terminal differentiation processes, all of which have been found to be recapitulated in different forms of cancers. Although Notch signaling has mostly been associated with oncogenic and growth-promoting roles, depending on the tissue type it can also function as a tumor suppressor. Here we describe recent findings on Notch signaling in cancer and tumor angiogenesis, and highlight some of the therapeutic approaches that are currently being developed to interfere with tumor growth and progression. Received 2 April 2007; received after revision 29 June 2007; accepted 2 July 2007  相似文献   

10.
Chemical modifications of RNA have been attracting increasing interest because of their impact on RNA fate and function. Therefore, the characterization of enzymes catalyzing such modifications is of great importance. The RNA cytosine methyltransferase NSUN3 was recently shown to generate 5-methylcytosine in the anticodon loop of mitochondrial tRNAMet. Further oxidation of this position is required for normal mitochondrial translation and function in human somatic cells. Because embryonic stem cells (ESCs) are less dependent on oxidative phosphorylation than somatic cells, we examined the effects of catalytic inactivation of Nsun3 on self-renewal and differentiation potential of murine ESCs. We demonstrate that Nsun3-mutant cells show strongly reduced mt-tRNAMet methylation and formylation as well as reduced mitochondrial translation and respiration. Despite the lower dependence of ESCs on mitochondrial activity, proliferation of mutant cells was reduced, while pluripotency marker gene expression was not affected. By contrast, ESC differentiation was skewed towards the meso- and endoderm lineages at the expense of neuroectoderm. Wnt3 was overexpressed in early differentiating mutant embryoid bodies and in ESCs, suggesting that impaired mitochondrial function disturbs normal differentiation programs by interfering with cellular signalling pathways. Interestingly, basal levels of reactive oxygen species (ROS) were not altered in ESCs, but Nsun3 inactivation attenuated induction of mitochondrial ROS upon stress, which may affect gene expression programs upon differentiation. Our findings not only characterize Nsun3 as an important regulator of stem cell fate but also provide a model system to study the still incompletely understood interplay of mitochondrial function with stem cell pluripotency and differentiation.  相似文献   

11.
Wnt signaling is required for neurogenesis, the fate of neural progenitors, the formation of neuronal circuits during development, neuron positioning and polarization, axon and dendrite development and finally for synaptogenesis. This signaling pathway is also implicated in the generation and differentiation of glial cells. In this review, we describe the mechanisms of action of Wnt signaling pathways and their implication in the development and correct functioning of the nervous system. We also illustrate how a dysregulated Wnt pathway could lead to psychiatric, neurodegenerative and demyelinating pathologies. Lithium, used for the treatment of bipolar disease, inhibits GSK3β, a central enzyme of the Wnt/β-catenin pathway. Thus, lithium could, to some extent, mimic Wnt pathway. We highlight the possible dialogue between lithium therapy and modulation of Wnt pathway in the treatment of the diseases of the nervous system.  相似文献   

12.
Hedgehog signaling in pancreas development and disease   总被引:6,自引:0,他引:6  
Since its discovery, numerous studies have shown that the Hedgehog (Hh) signaling pathway plays an instrumental role during diverse processes of cell differentiation and organ development. More recently, it has become evident that Hh signaling is not restricted to developmental events, but retains some of its activity during adult life. In mature tissues, Hh signaling has been implicated in the maintenance of stem cell niches in the brain, renewal of the gut epithelium and differentiation of hematopoietic cells. In addition to the basal function in adult tissue, deregulated signaling has been implicated in a variety of cancers, including basal cell carcinoma, glioma and small cell lung cancer. Here, we will focus on the role of Hh signaling in pancreas development and pancreatic diseases, including diabetes mellitus, chronic pancreatitis and pancreatic cancer. Received 5 August 2005; received after revision 4 November 2005; accepted 22 November 2005  相似文献   

13.
The number of mature osteoblasts and marrow adipocytes in bone is influenced by the differentiation of the common mesenchymal progenitor cell towards one phenotype and away from the other. Consequently, factors which promote adipogenesis not only lead to fatty marrow but also inhibit osteoblastogenesis, resulting in decreased osteoblast numbers, diminished bone formation and, potentially, inadequate bone mass and osteoporosis. In addition to osteoblast and bone adipocyte numbers being influenced by this skewing of progenitor cell differentiation towards one phenotype, mature osteoblasts and adipocytes secrete factors which may evoke changes in the cell fate and function of each other. This review examines the endogenous factors, such as PPAR-γ2, Wnt, IGF-1, GH, FGF-2, oestrogen, the GP130 signalling cytokines, vitamin D and glucocorticoids, which regulate the selection between osteoblastogenesis and adipogenesis and the interrelationship between fat and bone. The role of adipokines on bone, such as adiponectin and leptin, as well as adipose-derived oestrogen, is reviewed and the role of bone as an energy regulating endocrine organ is discussed.  相似文献   

14.
Development and differentiation of the intestinal epithelium   总被引:12,自引:0,他引:12  
The gastrointestinal tract develops from a simple tube to a complex organ with patterns of differentiation along four axes of asymmetry. The organ is composed of all three germ layers signaling to each other during development to form the adult structure. The gut epithelium is a constitutively developing tissue, constantly differentiating from a stem cell in a progenitor pool throughout the life of the organism. Signals from the adjacent mesoderm and between epithelial cells are required for normal orderly development/differentiation, homeostasis, and apoptosis. Embryonically important patterning factors are used during adult stages for these processes. Such critical pathways as the hedgehog, bone morphogenetic protein, Notch, Sox, and Wnt systems are used both in embryologic and adult times of gut development. We focus on and review the roles of these factors in gut epithelial cell development and differentiation.Received 18 October 2002; received after revision 18 December 2002; accepted 18 December 2002  相似文献   

15.
Mechanical stimulation affects growth and differentiation of stem cells. This may be used to guide lineage-specific cell fate decisions and therefore opens fascinating opportunities for stem cell biology and regenerative medicine. Several studies demonstrated functional and molecular effects of mechanical stimulation but on first sight these results often appear to be inconsistent. Comparison of such studies is hampered by a multitude of relevant parameters that act in concert. There are notorious differences between species, cell types, and culture conditions. Furthermore, the utilized culture substrates have complex features, such as surface chemistry, elasticity, and topography. Cell culture substrates can vary from simple, flat materials to complex 3D scaffolds. Last but not least, mechanical forces can be applied with different frequency, amplitude, and strength. It is therefore a prerequisite to take all these parameters into consideration when ascribing their specific functional relevance—and to only modulate one parameter at the time if the relevance of this parameter is addressed. Such research questions can only be investigated by interdisciplinary cooperation. In this review, we focus particularly on mesenchymal stem cells and pluripotent stem cells to discuss relevant parameters that contribute to the kaleidoscope of mechanical stimulation of stem cells.  相似文献   

16.
The bone marrow microenvironment (BMM) regulates the fate of hematopoietic stem cells (HSCs) in homeostatic and pathologic conditions. In myeloid malignancies, new insights into the role of the BMM and its cellular and molecular actors in the progression of the diseases have started to emerge. In this review, we will focus on describing the major players of the HSC niche and the role of the altered niche function in myeloid malignancies, more specifically focusing on the mesenchymal stroma cell compartment.  相似文献   

17.
The gastrointestinal tract develops from a simple and uniform tube into a complex organ with specific differentiation patterns along the anterior–posterior and dorso-ventral axes of asymmetry. It is derived from all three germ layers and their cross-talk is important for the regulated development of fetal and adult gastrointestinal structures and organs. Signals from the adjacent mesoderm are essential for the morphogenesis of the overlying epithelium. These mesenchymal–epithelial interactions govern the development and regionalization of the different gastrointestinal epithelia and involve most of the key morphogens and signaling pathways, such as the Hedgehog, BMPs, Notch, WNT, HOX, SOX and FOXF cascades. Moreover, the mechanisms underlying mesenchyme differentiation into smooth muscle cells influence the regionalization of the gastrointestinal epithelium through interactions with the enteric nervous system. In the neonatal and adult gastrointestinal tract, mesenchymal–epithelial interactions are essential for the maintenance of the epithelial regionalization and digestive epithelial homeostasis. Disruption of these interactions is also associated with bowel dysfunction potentially leading to epithelial tumor development. In this review, we will discuss various aspects of the mesenchymal–epithelial interactions observed during digestive epithelium development and differentiation and also during epithelial stem cell regeneration.  相似文献   

18.
19.
20.
In aerobic organisms, oxygen is a critical factor in tissue and organ morphogenesis from embryonic development throughout post-natal life, as it regulates various intracellular pathways involved in cellular metabolism, proliferation, survival and fate. In the mammalian central nervous system, oxygen plays a critical role in regulating the growth and differentiation state of neural stem cells (NSCs), multipotent neuronal precursor cells that reside in a particular microenvironment called the neural stem cell niche and that, under certain physiological and pathological conditions, differentiate into fully functional mature neurons, even in adults. In both experimental and clinical settings, oxygen is one of the main factors influencing NSCs. In particular, the physiological condition of mild hypoxia (2.5–5.0% O2) typical of neural tissues promotes NSC self-renewal; it also favors the success of engraftment when in vitro-expanded NSCs are transplanted into brain of experimental animals. In this review, we analyze how O2 and specifically hypoxia impact on NSC self-renewal, differentiation, maturation, and homing in various in vitro and in vivo settings, including cerebral ischemia, so as to define the O2 conditions for successful cell replacement therapy in the treatment of brain injury and neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号