首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East China Sea, and part of the Philippine Sea so that the currents in the vicinity of the Luzon Strait are free to evolve. In addition, all channels between the South China Sea and the Indonesian seas are closed so that the focus is on the Luzon Strait transport. The model is driven by specified Philippine Sea currents and by surface heat and salt flux conditions. For simplicity, no wind-stress is applied at the surface.The simulated Luzon Strait transport and the South China Sea circulation feature a sandwich vertical structure from the surface to the bottom. The Philippine Sea water is simulated to enter the South China Sea at the surface and in the deep ocean and is carried to the southern basin by western boundary currents. At the intermediate depth, the net Luzon Strait transport is out of t  相似文献   

2.
南海环流动力机制研究综述   总被引:40,自引:9,他引:31  
南海的环流复杂,但通过近20 a来的研究工作,国内外学者对此已取得了不少的成果.本文就南海环流框架性的问题,综述了有关的文献,认为对南海上层海洋三方面的环流分量的驱动机制已有了初步的认识.这三方面分别是:(1)准季节性风场;(2)黑潮向南海的净输运;(3)黑潮向南海的涡度平流输送.但是对这些驱动的时空变化仍相当不清楚.三者皆增强了南海北部的海盆尺度气旋式环流,其强化的西南向西边界流靠近东沙群岛,建议称为“东沙海流”.没有水文证据显示黑潮水是以分支形式进入南海,其向南海的输运也不可能主要通过中尺度涡过程,具体机制有待研究.每年在南海生成的中尺度涡平均约有10个,风场与沿岸地形所生成的强风应力旋度可能是其主要的驱动机制.作为框架性的认识,也有三方面的工作进行得较少,即:(1)吕宋海峡的上层水交换;(2)南海的中尺度涡生成机制,虽然强风应力旋度及前述的第三种环流驱动机制也有中尺度涡伴生;(3)自吕宋海峡进入的深层水对南海上层海洋环流的影响.  相似文献   

3.
Researches on the currents in the South China Sea (SCS) and the interaction between the SCS and its adjacent seas are reviewed. Overall seasonal circulation in the SCS is cyclonic in winter and anticyclonic in summer with a few stable eddies. The seasonal circulation is mostly driven by monsoon winds, and is related to water exchange between the SCS and the East China Sea through the Taiwan Strait, and between the SCS and the Kuroshio through the Luzon Strait. Seasonal characteristics of the South China Sea Warm Current in the northern SCS and the Kuroshio intrusion to the SCS are summarized in terms of the interaction between the SCS and its adjacent seas.  相似文献   

4.
A numerical study of the summertime flow around the Luzon Strait   总被引:3,自引:0,他引:3  
Luzon Strait, a wide channel between Taiwan and Luzon islands, connects the northern South China Sea and the Philippine Sea. The Kuroshio, South China Sea gyre, monsoon and local topography influence circulation in the Luzon Strait area. In addition, the fact that the South China Sea is a fairly isolated basin accounts for why its water property differs markedly from the Kuroshio water east of Luzon. This work applies a numerical model to examine the influence of the difference in the vertical stratification between the South China Sea and Kuroshio waters on the loop current of Kuroshio in the Luzon Strait during summer. According to model results, the loop current’s strength in the strait reduces as the strongly stratified South China Sea water is driven northward by the southwest winds. Numerical results also indicate that Kuroshio is separated by a nearly meridional ridge east of Luzon Strait. The two velocity core structures of Kuroshio can also be observed in eastern Taiwan. Moreover, the water flowing from the South China Sea contributes primarily to the near shore core of Kuroshio.  相似文献   

5.
Intrusion of the Kuroshio into the South China Sea,in September 2008   总被引:8,自引:0,他引:8  
Using widespread conductivity–temperature–depth (CTD) data in the Philippine Sea and northern South China Sea near the Luzon Strait together with altimeter data, we identified an intrusion of water from the Kuroshio into the South China Sea (SCS) through the Luzon Strait in September 2008. The Kuroshio water obviously intruded into the SCS from 20 to 21°N, and existed mainly in the upper 300 m. The intrusion water extended as far west as 117°E, then looped around in an anticyclonic eddy and returned to the Philippine Sea further north. The dynamics of the Kuroshio intrusion are discussed using a 1.5-layer nonlinear shallow-water reduced-gravity model. The analysis suggests that the strong cyclonic eddy to the east of the Kuroshio in September 2008 was of benefit to the intrusion event.  相似文献   

6.
One hundred and ninety-one Argos satellite-tracked drifters deployed at the Luzon Strait in winter during 1991 to 2004 were ana- lyzed to understand the near surface current in northern South China Sea (SCS). Several major track patterns of these drifters have been found. There are: (1)shelf slope landing way (SLW) ; (2)deep basin way (DBW) ;(3) weak loop current pattern; (4) northward movement directly driven by the Kuroshio. These observations show the effects of the basin scale gyre circulation, mesoscale eddies and the Kuroshio on the drifters' ovement.  相似文献   

7.
A P - vector method is optimized using the variational data assimilation technique(VDAT). The absolute geostrophic velocity fields in the vicinity of the Luzon Strait (LS) are calculated, the spatial structures and seasonal variations of the absolute geostrophic velocity field are investigated. Our results show that the Kuroshio enters the South China Sea (SCS) in the south and middle of the Luzon Strait and flows out in the north, so the Kuroshio makes a slight clockwise curve in the Luzon Strait, and the curve is strong in winter and weak in summer. During the winter, a westward current appears in the surface, and locates at the west of the Luzon Strait. It is the north part of a cyclonic gyre which exits in the northeast of the SCS; an anti-cyclonic gyre occurs on the intermediate level, and it exits in the northeast of the SCS, and an eastward current exits in the southeast of the anti-cyclonic gyre.  相似文献   

8.
南海东北部是寡营养海域,夏季浮游植物叶绿素浓度较低,热带气旋“风泵”效应带来的上层海洋扰动可能引起表层浮游植物的显著增长。以往的研究通常关注热带气旋风应力和海洋中尺度涡对上层海洋浮游植物的影响,本文利用航次CTD、实测叶绿素a浓度、Argo温盐剖面和遥感数据,探讨了台风“风泵”和黑潮共同作用下真光层内浮游植物的变化特征及其成因。结果表明,2015年台风“莲花”过境1周后产生向吕宋海峡西北侧南海海域(A区)入侵的黑潮流套,该入侵的黑潮流套使台风前原有的气旋涡消失,抑制了台风产生的上升流对表层(0~40 m)营养盐供给,使次表层(60~90 m)营养盐富集,进而抑制了表层的叶绿素a增长,促进了次表层叶绿素a的增长;吕宋海峡西侧南海海域(B区)表层的浮游植物叶绿素a浓度增加不仅是源于叶绿素最大层浮游植物的向上输运,更是由于浮游植物的繁殖增长;A区台风引起的流套式的黑潮入侵,促进了B区台风后气旋式流场的形成,产生的持续增强的气旋涡为B区表层叶绿素持续增长提供了充足的营养盐供给。  相似文献   

9.
Two intensive, high-resolution hydrographic surveys during April 2000 and May 2001 are used to characterize the thermohaline and current structure at the shelfbreak in the South China Sea. In 2000, a strong anticyclonic circulation was present in the northern portion of the South China Sea with strong onshore currents east of Dongsha Island. The flow became polarized along isobaths as it encountered shallow water, with northeastward flows of over 0.9 m/s along steep topography. The flow was driven by strong density contrasts between waters of the outer shelf and upper slope. Shelf water was both cooler and more fresh than the water offshore, which had salinities close to that of Kuroshio water. In contrast, the mean flow in the northern South China Sea was predominantly cyclonic in 2001. Flow over the slope was to the southwest at up to 0.2 m/s. The water mass properties of the outer shelf and upper slope were similar, so that there were not the strong cross-shelf density gradients present as in 2000. A potential difference between the water mass structure of the two years was the difference in cooling during the preceding winters. In December, 1999, unusually strong cooling may have resulted in cooler shelf waters relative to the following year. The ASIAEX study area may be a particularly sensitive region to both seasonal and interannual variability, as it is near a bifurcation point associated with the Kuroshio Intrusion into the South China Sea.  相似文献   

10.
The muhiyear averaged surface current field and seasonal variability in the Kuroshio and adjacent regions are studied. The data used are trajectories and (1/4) ° latitude by (1/4) ° longitude mean currents derived from 323 Argos drifters deployed by Chinese institutions and world ocean circulation experiment from 1979 to 2003. The results show that the Kuroshio surface path adapts well to the western boundary topography and exhibits six great turnings. The branching occurs frequently near anticyclonic turnings rather than near cyclonic ones. In the Luzon Strait, the surface water intrusion into the South China Sea occurs only in fall and winter. The Kuroshio surface path east of Taiwan, China appears nearly as straight lines in summer, fall, and winter, when anticyclonic eddies coexist on its right side; while the path may cyclonically turning in spring when no eddy exists. The Kuroshio intrusion northeast of Taiwan often occurs in fall and winter, but not in summer. The running direction, width and velocity of the middle segment of the Kuroshio surface currents in the East China Sea vary seasonally. The northward intrusion of the Kuroshio surface water southwest of Kyushu occurs in spring and fall, but not in summer. The northmost position of the Kuroshio surface path southwest of Kyushu occurs in fall, but never goes beyond 31 °N. The northward surface current east of the Ryukyu Islands exists only along Okinawa-Amami Islands from spring to fall. In particular, it appears as an arm of an anti- cyclonic eddy in fall.  相似文献   

11.
综述了南海和台湾以东海域若干气旋型和反气旋型涡旋研究.在南海存在着许多活跃的中尺度涡,我们分别对南海中、南部海域和南海北部海域中尺度涡作了评述.在南海北部海域,目前最感兴趣的问题为:南海水与西菲律宾海通过吕宋海峡的交换的物理过程,以及黑潮是否以反气旋流套形式进入南海.这些问题目前尚不清楚,尤其是这些问题的机理.这些问题必须通过今后深入和细致的、长时间的海流和水文观测,以及长时间卫星遥感观测资料的论证才能逐渐认识清楚.台湾以东海域,黑潮两侧经常出现中尺度涡,而且变化较大而复杂.文中着重讨论兰屿冷涡和台湾东北的气旋式冷涡.  相似文献   

12.
黑潮入侵优化对南海北部中尺度涡旋模拟的影响   总被引:1,自引:1,他引:0  
基于高分辨率海洋环流模式,通过比较吕宋海峡处地形优化后的黑潮入侵形态和强度不同的试验,我们研究了黑潮入侵优化后对南海中尺度涡模拟的影响。我们发现黑潮入侵的减弱导致了涡旋活动的减弱,这使得模式结果与观测结果更为相近。在这种情况下,模式模拟的吕宋海峡西部及北部陆坡区域的涡动动能明显减弱。模式涡动动能的减弱与模式反气旋式涡数量的减少和气旋式涡强度的减弱有关。涡动动能收支的分析进一步表明,黑潮入侵的优化将通过改变水平速度切变和温跃层斜率来改变涡动动能,而这两个参数分别与正压和斜压不稳定性有关。前者在模式涡动动能减弱中起着更为重要的作用,而黑潮入侵导致的涡动动能的水平输送对吕宋海峡西部区域的能量收支同样起着重要的作用。  相似文献   

13.
Numerical Study of the Upper-Layer Circulation in the South China Sea   总被引:7,自引:0,他引:7  
Upper-layer circulation in the South China Sea has been investigated using a three-dimensional primitive equation eddy-resolving model. The model domain covers the region from 99° to 122°E and from 3° to 23°N. The model is forced by the monthly averaged European Centre for Medium-Range Weather Forecasts (ECMWF) model winds and the climatological monthly sea surface temperature data from National Oceanographic Data Center (NODC). Inflow and outflow through the Taiwan Strait and the Sunda shelf are prescribed monthly from the Wyrtki estimates. Inflow of the Kuroshio branch current in the Luzon Strait is assumed to have a constant volume transport of 12 Sv (1 Sv = 106 m3/s), and the outflow from the open boundary to the east of Taiwan is adjusted to ensure the net volume transport through all open boundaries is zero at any instant. The model reveals that a cyclonic circulation exists all year round in the northern South China Sea. During the winter time this cyclonic eddy is located off the northwest of Luzon, coinciding with the region of positive wind stress curl in this season. This cyclonic eddy moves northward in spring due to the weakening of the northeast winds. The cyclonic circulation becomes weak and stays in the continental slope region in the northern South China Sea in the summer period. The southwest wind can raise the water level along the west coast of Luzon, but there is no anticyclonic circulation in the northern South China Sea. After the onset of the northeast monsoon winds in fall, the cyclonic eddy moves back to the region off the west coast of Luzon. In the southern South China Sea and off the Vietnam coast, the model predicts a similar flow structure as in the previous related studies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
通过一个全球的二维诊断模型,采用Levitus温盐资料和COADS风应力资料,并结合动力计算来研究南海上层环流的季节变化。计算结果与其它模式结果和观测结果非常相似。南海北部(南部)全年存在一气旋式(反气旋式)环流。在冬季气旋式环流几乎占据了整个南海,夏季则以反气旋式环流为主。泰国湾的环流在冬季(夏季)是气旋式的(反气旋的)。南海的西边界流有明显的季节变化,其在冬季从卡里马塔海峡流出南海,夏季部分西边界流从台湾海峡流出南海。越南离岸流在春季就开始出现,其位置比夏季的越南离岸流的位置偏北。  相似文献   

15.
黑潮对邻近中国海的影响和琉球海流研究在物理海洋学是一个很重要的、有趣的课题。为了深入地阐明由中国科学家自2010年7月至2015年5月期间所作研究的进展,本文在以下三个方面进行评述。第一方面是关于黑潮入侵南海以及在吕宋海峡周围的环流,分为以下二个很重要论题做阐述:黑潮入侵的季节和年际变化以及黑潮入侵的机制;黑潮对吕宋海峡海流和南海北部环流的影响。第二方面是关于黑潮及其对东海相互作用的变化,分为以下四个有趣的论题来阐述:东海黑潮研究的评述;黑潮入侵东海,水交换以及动力因子;由于黑潮作用营养物质通量在下游增加;从卫星遥感的应用对黑潮入侵东海对陆地物质通量的影响。第三方面,琉球海流与东海黑潮相互作用也被讨论。最后本文主要点作了总结,对今后进一步需要研究也被讨论。  相似文献   

16.
吕宋海峡是南海与外界水交换的重要通道,黑潮作为北太平洋最强的1支西边界流,在经过吕宋海峡时会对南海北部的环流和环境产生重要影响。本文用1991—2011年期间CTD断面实测资料和高度计资料,提取23.0~25.5 kg/m3等密度面之间的盐度极大值,研究了南海北部不同年月盐度极大值变化、黑潮入侵方式与强弱,以及盐度极大值变化与北赤道流分叉点南北移动的关系,结果表明:(1)黑潮入侵南海方式多样,既有分支形式,也有弯曲、流套形式。(2)不同年月间,黑潮入侵南海的强弱存在较大差别,120°E断面的次表层盐度极大值的变动可超过0.3。(3)北赤道流分叉点位置的南北变动对黑潮入侵南海的强弱具有重要影响:北赤道流分叉点位置偏北,黑潮入侵南海较强;北赤道流分叉点位置偏南,则黑潮入侵相对较弱。  相似文献   

17.
The surface circulation of northern South China Sea (hereafter SCS) for the period 1987–2005 was studied using the data of more than 500 satellite-tracked drifters and wind data from QuikSCAT. The mean flow directions in the northern SCS except the Luzon Strait (hereafter LS) during the periods October~March was southwestward, and April~September northeastward. A strong northwestward intrusion of the Kuroshio through the LS appears during the October~March period of northeasterly wind, but the intrusion became weak between April and September. When the strong intrusion occurred, the eddy kinetic energy (EKE) in the LS was 388 cm2/s2 which was almost 2 times higher than that during the weak-intrusion season. The volume transport of the Kuroshio in the east of the Philippines shows an inverse relationship to that of the LS. There is a six-month phase shift between the two seasonal phenomena. The volume transport in the east of the Philippines shows its peak sis-month earlier faster than that of the LS. The strong Kuroshio intrusion is found to be also related to the seasonal variation of the wind stress curl generated by the northeasterly wind. The negative wind stress curl in the northern part of LS induces an anticyclonic flow, while the positive wind stress curl in the southern part of LS induces a cyclonic flow. The northwestward Kuroshio intrusion in the northern part of LS happened with larger negative wind stress curl, while the westward intrusion along 20.5°N in the center of the LS occurred with weaker negative wind stress curl.  相似文献   

18.
P矢量方法在南海夏季环流诊断计算中的应用   总被引:8,自引:4,他引:8  
基于1998年6~7月南海调查航次的CTD资料,对南海环流采用最近发展的P矢量方法进行诊断计算.计算结果:黑潮向西入侵南海,然后做反气旋弯曲向东北方向流动,最终有通过巴士海峡流出南海的趋势.在南海北部存在一个气旋性环流,这个环流的强度和范围随深度增加而减小.该环流的冷中心位置随深度增加稍向南移.南海中部、越南以东海域存在一个明显的气旋涡和反气旋涡,尤其在200m及其以上水层均相当稳定,反气旋涡位于越南以东,其中心位置在11°53'N,111°50'E,气旋涡的中心位置在13°17'N,112°55'E,两者的尺度皆约为250km.吕宋岛西侧存在一个反气旋涡.在计算海区南部、巴拉望岛西南海域,100m以上层存在一个反气旋式涡.从各层流场分布均可以显示海流在西部强化的现象.  相似文献   

19.
An array of three bottom-mounted ADCP moorings was deployed on the prevailing propagation path of strong internal tides for nearly 1 year across the continental slope in the northern South China Sea. These velocity measurements are used to study the intra-annual variability of diurnal and semidiurnal internal tidal energy in the region. A numerical model, the Luzon Strait Ocean Nowcast/Forecast System developed at the U.S. Naval Research Laboratory that covers the northern South China Sea and the Kuroshio, is used to interpret the observed variation of internal tidal energy on the Dongsha slope. Internal tides are generated primarily at the two submarine ridges in the Luzon Strait. At the western ridge generation site, the westward energy flux of the diurnal internal tide is sensitive to the stratification and isopycnal slope associated with the Kuroshio. The horizontal shear at the Kuroshio front does not modify the propagation path of either diurnal or semidiurnal tides because the relative vorticity of the Kuroshio in Luzon Strait is not strong enough to increase the effective inertial frequency to the intrinsic frequency of the internal tides. The variation of internal tidal energy on the continental slope and Dongsha plateau can be attributed to the variation in tidal beam propagation in the northern South China Sea.  相似文献   

20.
Interannual variability of the Kuroshio intrusion in the South China Sea   总被引:13,自引:1,他引:13  
The interannual variability of intrusions of the Kuroshio into the South China Sea (SCS) is investigated using satellite remote sensing data supported by in-situ measurements. The mesoscale circulation of the SCS is predominantly wind-forced by the northeast winter and southwest summer monsoons. Although the region has been studied extensively, considerable uncertainty remains about the annual and interannual mesoscale nature of the circulation. The frequency and characteristics of Kuroshio intrusions and their effect on circulation patterns in the northeast SCS are also not well understood. Satellite observations of Sea Surface Temperature (SST) from the Tropical Rainfall Measuring Mission (TRMM) and the Advanced Very High Resolution Radiometer (AVHRR) and Sea Surface Height Anomalies (SSHA) from TOPEX/ Poseidon for the period 1997–2005 are used here to analyze the annual and interannual variability in Kuroshio intrusions and their effects on the region. Analysis of SST and SSHA shows the formation and characteristics of intrusions vary considerably each year. Typically, the intrusion occurs in the central region of Luzon Strait and results in an anticyclonic circulation in the northeastern SCS. However, in some years, the intrusion is located in the northern portion of Luzon Strait and a cyclonic intrusion results. Wind stress and wind stress curl derived from the National Aeronautics and Space Administration (NASA) QuikSCAT satellite scatterometer are used to evaluate the relationship between wind stress or wind stress curl and the presence of winter Kuroshio intrusions into the SCS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号