首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Phthalates have been used for decades in large quantities, leading to the ubiquitous exposure of the population.In an investigation of 63 German daycare centers, indoor air and dust samples were analyzed for the presence of 10 phthalate diesters. Moreover, 10 primary and secondary phthalate metabolites were quantified in urine samples from 663 children attending these facilities. In addition, the urine specimens of 150 children were collected after the weekend and before they went to daycare centers.Di-isobutyl phthalate (DiBP), dibutyl phthalate (DnBP), and di-2-ethylhexyl phthalate (DEHP) were found in the indoor air, with median values of 468, 227, and 194 ng/m3, respectively. In the dust, median values of 888 mg/kg for DEHP and 302 mg/kg for di-isononyl phthalate (DiNP) were observed. DnBP and DiBP were together responsible for 55% of the total phthalate concentration in the indoor air, whereas DEHP and DiNP were responsible for 70% and 24% of the total phthalate concentration in the dust.Median concentrations in the urine specimens were 44.7 μg/l for the DiBP monoester, 32.4 μg/l for the DnBP monoester, and 16.5 μg/l and 17.9 μg/l for the two secondary DEHP metabolites. For some phthalates, we observed significant correlations between their concentrations in the indoor air and dust and their corresponding metabolites in the urine specimens using bivariate analyses. In multivariate analyses, the concentrations in dust were not associated with urinary metabolite excretion after controlling for the concentrations in the indoor air.The total daily “high” intake levels based on the 95th percentiles calculated from the biomonitoring data were 14.1 μg/kg b.w. for DiNP and 11.9 μg/kg b.w. for DEHP. Compared with tolerable daily intake (TDI) values, our “high” intake was 62% of the TDI value for DiBP, 49% for DnBP, 24% for DEHP, and 9% for DiNP. For DiBP, the total daily intake exceeded the TDI value for 2.4% of the individuals. Using a cumulative risk-assessment approach for the sum of DEHP, DnBP, and DiBP, 20% of the children had concentrations exceeding the hazard index of one. Therefore, a further reduction of the phthalate exposure of children is needed.  相似文献   

2.
Daily dietary intake of perfluorinated chemicals (PFCs) in relation to serum levels was assessed by determination of nine PFCs including perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in matched daily diet duplicates and serum samples. Diet and serum were collected in year 2004 from 20 women in Osaka and Miyagi, Japan. Only PFOS and PFOA were detected in the diet samples and no significant difference between cities was seen. After adjusted by water content, diet concentration of PFOA was significantly higher in Osaka. The median daily intake calculated using the measured diet concentrations was 1.47 ng PFOS/kg b.w. and 1.28 ng PFOA/kg b.w. for Osaka, and 1.08 ng PFOS/kg b.w. and 0.72 ng PFOA/kg b.w. for Miyagi. A significant difference between cities was seen for the serum concentrations with median of 31 ng/mL PFOS and PFOA in Osaka, compared to 14 ng/mL PFOS and 4.6 ng/mL PFOA in Miyagi. Carboxylates such as perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUnDA) were also detected in serum at median levels 6.9 ng/mL and 3.2 ng/mL (Osaka), and 2.8 ng/mL and 5.1 ng/mL (Miyagi). Based on one-compartment model under steady state, dietary intake of PFOS and PFOA accounted for only 22.4% and 23.7% of serum levels in Osaka females, and in contrast 92.5% and 110.6% in Miyagi females, respectively.  相似文献   

3.
Polybrominated diphenyl ethers (PBDEs) are lipophilic, persistent pollutants found worldwide in environmental and human samples. Exposure pathways for PBDEs remain unclear but may include food, air and dust. The aim of this study was to conduct an integrated assessment of PBDE exposure and human body burden using 10 matched samples of human milk, indoor air and dust collected in 2007–2008 in Brisbane, Australia. In addition, temporal analysis was investigated comparing the results of the current study with PBDE concentrations in human milk collected in 2002–2003 from the same region.PBDEs were detected in all matrices and the median concentrations of BDEs -47 and -209 in human milk, air and dust were: 4.2 and 0.3 ng/g lipid; 25 and 7.8 pg/m3; and 56 and 291 ng/g dust, respectively. Significant correlations were observed between the concentrations of BDE-99 in air and human milk (r = 0.661, p = 0.038) and BDE-153 in dust and BDE-183 in human milk (r = 0.697, p = 0.025). These correlations do not suggest causal relationships — there is no hypothesis that can be offered to explain why BDE-153 in dust and BDE-183 in milk are correlated. The fact that so few correlations were found in the data could be a function of the small sample size, or because additional factors, such as sources of exposure not considered or measured in the study, might be important in explaining exposure to PBDEs. There was a slight decrease in PBDE concentrations from 2002–2003 to 2007–2008 but this may be due to sampling and analytical differences. Overall, average PBDE concentrations from these individual samples were similar to results from pooled human milk collected in Brisbane in 2002–2003 indicating that pooling may be an efficient, cost-effective strategy of assessing PBDE concentrations on a population basis.The results of this study were used to estimate an infant's daily PBDE intake via inhalation, dust ingestion and human milk consumption. Differences in PBDE intake of individual congeners from the different matrices were observed. Specifically, as the level of bromination increased, the contribution of PBDE intake decreased via human milk and increased via dust. As the impacts of the ban of the lower brominated (penta- and octa-BDE) products become evident, an increased use of the higher brominated deca-BDE product may result in dust making a greater contribution to infant exposure than it does currently.To better understand human body burden, further research is required into the sources and exposure pathways of PBDEs and metabolic differences influencing an individual's response to exposure. In addition, temporal trend analysis is necessary with continued monitoring of PBDEs in the human population as well as in the suggested exposure matrices of food, dust and air.  相似文献   

4.
A total of 27 per- and polyfluorinated compounds (PFCs) were determined in both house dust (n = 10) and indoor air (n = 10) from selected homes in Catalonia, Spain. Concentrations were found to be similar or lower than those previously reported for household microenvironments in other countries. Ten PFCs were detected in all house dust samples. The highest mean concentrations corresponded to perfluorodecanoic acid (PFDA) and perfluorononanoic acid (PFNA), 10.7 ng/g (median: 1.5 ng/g) and 10.4 ng/g (median: 5.4 ng/g), respectively, while the 8:2 fluorotelomer alcohol (FTOH) was the dominating neutral PFC at a concentration of 0.41 ng/g (median: 0.35 ng/g). The indoor air was dominated by the FTOHs, especially the 8:2 FTOH at a mean (median) concentration of 51 pg/m3 (median: 42 pg/m3). A limited number of ionic PFCs were also detected in the indoor air samples. Daily intakes of PFCs were estimated for average and worst case scenarios of human exposure from indoor sources. For toddlers, this resulted in average intakes of ∑ ionic PFCs of 4.9 ng/day (0.33 ng/kgbw/day for a 15 kg toddlers) and ∑ neutral PFCs of 0.072 ng/day (0.005 ng/kgbw/day) from house dust. For adults, the average daily intakes of dust were 3.6 and 0.053 ng/day (0.05 and 0.001 ng/kgbw/day for a 70 kg adult) for ∑ ionic and ∑ neutral PFCs, respectively. The average daily inhalation of ∑ neutral PFCs was estimated to be 0.9 and 1.3 ng/day (0.06 and 0.02 ng/kgbw/day) for toddlers and adults, respectively. For PFOS, the main ionic PFC detected in indoor air samples, the median intakes (based on those samples where PFOS was detected), resulted in indoor exposures of 0.06 and 0.11 ng/day (0.004 and 0.002 ng/kgbw/day) for toddlers and adults, respectively. Based on previous studies on dietary intake and drinking water consumption, both house dust and indoor air contribute significantly less to PFC exposure within this population.  相似文献   

5.
Dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexanes (HCHs) are widely detected in the environment, although they have been banned in China since 1980s. To better understand the route-specific daily uptake of the pesticides by humans, a total of 322 food, dust, and air samples were collected in Shanghai, China, during 2008–2011. The median concentrations were 0.2–126.6 and 0.03–1.6 ng/g wet weight for DDTs (DDT and its metabolites) and HCHs, respectively, in different types of foods. The values in dust (indoors and outdoors) were 5.7–29.8 and 1.3–5.4 ng/g, and 13.9 × 10 3 and 2.6 × 10 3 ng/m3 in air (gas + particle) for DDTs and HCHs, respectively. The daily uptake of a pesticide by humans was calculated via the pesticide intake multiplied by its uptake efficiency. The uptake efficiencies of DDTs and HCHs in food through human intestines were estimated using bioaccessibility measured via an in vitro method simulating the human gastrointestinal digestion process. The total daily uptakes of DDTs and HCHs through three routes (i.e., ingestion, inhalation, and dermal contact) were 79.4 and 4.9 ng/day, respectively, for children, and 131.1 and 8.0 ng/day, respectively, for adults. Ingestion via food and dust was the main route of human exposure to the pesticides, and the daily uptake of the pesticides via food consumption accounted for 95.0–99.2% of the total.  相似文献   

6.
Phthalates have long been used as plasticizers to soften plastic products and, thus, are ubiquitous in modern life. As part of the Bavarian Monitoring of Breast Milk (BAMBI), we aimed to characterize the exposure of infants to phthalates in Germany. Overall, 15 phthalates, including di-2-ethylhexyl phthalate (DEHP), di-n-butyl phthalate (DnBP), di-isobutyl phthalate (DiBP), di-isononyl phthalate (DiNP), three primary metabolites of DEHP [mono-(2-ethylhexyl) phthalate (MEHP), mono-isobutyl phthalate (MiBP), and mono-n-butyl phthalate (MnBP)], and two secondary metabolites of DEHP were analyzed in 78 breast milk samples. We found median concentrations of 3.9 ng/g for DEHP, 0.8 ng/g for DnBP, and 1.2 ng/g for DiBP, while other parent phthalates were found in only some or none of the samples at levels above the limit of quantitation. In infant formula (n=4) we observed mean values of 19.7 ng/g (DEHP), 3.8 ng/g (DnBP), and 3.6 ng/g (DiBP). For MEHP, MiBP, and MnBP, the median values in breast milk were 2.3 μg/l, 11.8 μg/l, and 2.1 μg/l, respectively. The secondary metabolites were not detected in any samples. Using median and 95th percentile values, we estimated an "average" and "high" daily intake for an exclusively breast-fed infant of 0.6 μg/kg body weight (b.w.) and 2.1 μg/kg b.w., respectively, for DEHP, 0.1 μg/kg b.w. and 0.5 μg/kg b.w. for DnBP, and 0.2 μg/kg b.w. and 0.7 μg/kg b.w. for DiBP. For DiNP, intake values were 3.2 μg/kg b.w. and 6.4 μg/kg b.w., respectively, if all values in milk were set half of the detection limit or the detection limit. The above-mentioned "average" and "high" intake values corresponded to only about 2% to 7%, respectively, of the recommended tolerable daily intake. Thus, it is not likely that an infant's exposure to phthalates from breast milk poses any significant health risk. Nevertheless, other sources of phthalates in this vulnerable phase have to be considered. Moreover, it should be noted that for infants nourished with formula, phthalate intake is of the same magnitude or slightly higher (DEHP) than for exclusively breast-fed infants.  相似文献   

7.
Increased use of flame-retardants in office furniture may increase exposure to PBDEs in the office environment. However, partitioning of PBDEs within the office environment is not well understood. Our objectives were to examine relationships between concurrent measures of PBDEs in office air, floor dust, and surface wipes.We collected air, dust, and surface wipe samples from 31 offices in Boston, MA. Correlation and linear regression were used to evaluate associations between variables. Geometric mean (GM) concentrations of individual BDE congeners in air and congener specific octanol–air partition coefficients (Koa) were used to predict GM concentrations in dust and surface wipes and compared to the measured concentrations.GM concentrations of PentaBDEs in office air, dust, and surface wipes were 472 pg/m3, 2411 ng/g, and 77 pg/cm2, respectively. BDE209 was detected in 100% of dust samples (GM = 4202 ng/g), 93% of surface wipes (GM = 125 pg/cm2), and 39% of air samples. PentaBDEs in dust and air were moderately correlated with each other (r = 0.60, p = 0.0003), as well as with PentaBDEs in surface wipes (r = 0.51, p = 0.003 for both dust and air). BDE209 in dust was correlated with BDE209 in surface wipes (r = 0.69, p = 0.007). Building (three categories) and PentaBDEs in dust were independent predictors of PentaBDEs in both air and surface wipes, together explaining 50% (p = 0.0009) and 48% (p = 0.001) of the variation respectively. Predicted and measured concentrations of individual BDE congeners were highly correlated in dust (r = 0.98, p < 0.0001) and surface wipes (r = 0.94, p = 002). BDE209 provided an interesting test of this equilibrium partitioning model as it is a low volatility compound.Associations between PentaBDEs in multiple sampling media suggest that collecting dust or surface wipes may be a convenient method of characterizing exposure in the indoor environment. The volatility of individual congeners, as well as physical characteristics of the indoor environment, influence relationships between PBDEs in air, dust, and surface wipes.  相似文献   

8.
Tetrabromobisphenol A (TBBPA) and eight bisphenol analogues (BPs) including bisphenol A (BPA) were determined in 388 indoor (including homes and microenvironments) dust samples collected from 12 countries (China, Colombia, Greece, India, Japan, Kuwait, Pakistan, Romania, Saudi Arabia, South Korea, U.S., and Vietnam). The concentrations of TBBPA and sum of eight bisphenols (ƩBPs) in dust samples ranged from < 1 to 3600 and from 13 to 110,000 ng/g, respectively. The highest TBBPA concentrations in house dust were found in samples from Japan (median: 140 ng/g), followed by South Korea (84 ng/g) and China (23 ng/g). The highest ∑ BPs concentrations were found in Greece (median: 3900 ng/g), Japan (2600 ng/g) and the U.S. (2200 ng/g). Significant variations in BPA concentrations were found in dust samples collected from various microenvironments in offices and homes. Concentrations of TBBPA in house dust were significantly correlated with BPA and ∑ BPs. Among the nine target chemicals analyzed, BPA was the predominant compound in dust from all countries. The proportion of TBBPA in sum concentrations of nine phenolic compounds analyzed in this study was the highest in dust samples from China (27%) and the lowest in Greece (0.41%). The median estimated daily intake (EDI) of ∑ BPs through dust ingestion was the highest in Greece (1.6–17 ng/kg bw/day), Japan (1.3–16) and the U.S. (0.89–9.6) for various age groups. Nevertheless, in comparison with the reported BPA exposure doses through diet, dust ingestion accounted for less than 10% of the total exposure doses in China and the U.S. For TBBPA, the EDI for infants and toddlers ranged from 0.01 to 3.4 ng/kg bw/day, and dust ingestion is an important pathway for exposure accounting for 3.8–35% (median) of exposure doses in China.  相似文献   

9.
We have evaluated the levels and specific profiles of several organohalogenated contaminants, including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and flame retardants (FRs), such as polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), novel brominated FRs (NBFRs), and organophosphate FRs (OPFRs), in 47 indoor dust samples collected in 2010 from urban locations from Iasi, Eastern Romania. The dominant contaminants found in the samples were OPFRs (median sum OPFRs 7890 ng/g). Surprisingly, OCPs were also measured at high levels (median 1300 ng/g). Except for BDE 209 (median 275 ng/g), PBDEs were present in dust samples at relatively low levels (median sum PBDEs 8 ng/g). PCBs were also measured at low levels (median sum PCBs 35 ng/g), while NBFRs were only occasionally detected, showing a low usage in goods present on the Romanian market. The results of the present study evidence the existence of a multitude of chemical formulations in indoor dust. FRs are usually associated to human exposure via ingestion of dust, but other chemicals, such as OCPs, are not commonly reported in such matrix. Although OCPs were found at comparable levels with OPFRs in Romanian dust, OCPs possess a higher risk to human health due to their considerably lower reference dose (RfD) values. Indeed, the OCP exposure calculated for various intake scenarios was only 2-fold lower than the corresponding RfD. Therefore, the inclusion of OCPs as target chemicals in the indoor environment becomes important for countries where elevated levels in other environmental compartments have been previously shown.  相似文献   

10.
The levels of BDE-28, BDE-47, BDE-99, BDE-100, BDE-153, BDE-154, BDE-183, and BDE-209 were determined in the dust sampled from 60 automobiles that were available for resale at U.S. dealerships. The dominant congener in automobile dust was BDE-209 comprising 95% of the total PBDE levels with a median level of 48.1 µg g? 1. Statistical analysis of the vehicle attributes indicates that the BDE-209 levels are different (p < 0.05) with respect to groupings by vehicle model year, vehicle manufacturer, and the country of manufacture. Vehicle dust samples contained the characteristic profile of the PBDE congeners that comprise the PentaBDE formulation. While DecaBDE use is banned in Maine and Washington and is targeted for restriction in the near future by six U.S. states, vehicles and airplanes are exempt from the ban. It is anticipated that the human exposure potential to PBDEs from automobile dust ingestion will continue for an indefinite future period in the U.S. population.  相似文献   

11.
ObjectivesEmissions of mercury in the environment have been decreasing for several years. However, mercury species are still found in different media (food, water, air and breast-milk). Due to mercury toxicity and typical behaviour in children, we have conducted a mercury exposure assessment in French babies, and small children aged 0 to 36 months.MethodConsumption and mercury concentration data were chosen for the exposure assessment. The Monte Carlo technique has been used to calculate the weekly exposure dose in order to integrate inter-individual variability and parameter uncertainty. Exposure values have been compared to toxicological reference values for health risk assessment.ResultsInorganic mercury median exposure levels ranged from 0.160 to 1.649 μg/kg of body weight per week (95th percentile (P95): 0.298–2.027 µg/kg bw/week); elemental mercury median exposure level in children was 0.11 ng/kg bw/week (P95: 28 ng/kg bw/week); and methylmercury median exposure level ranged from 0.247 to 0.273 µg/kg bw/week (P95: 0.425–0.463 µg/kg bw/week). Only elemental mercury by inhalation route (indoor air) and methylmercury by ingestion (fish and breast-milk) seem to lead to a health risk in small children.ConclusionsThese results confirm the importance of assessing total mercury concentration in media like breast-milk, indoor air and dust and methylmercury level in food, other than fish and seafood. In this way, informed monitoring plan and risk assessment in an at-risk sub-population can be set.  相似文献   

12.
Polybromodiphenyl ethers (PBDEs), including the decabromodiphenyl congener (BDE-209), were determined in the serum of 731 individuals from a general adult population (18–74 years) collected in 2002 in Catalonia (north-eastern Spain). The BDE-209 was the predominant congener (median 3.7 ng/g lipid) followed by BDE-47 (2.6 ng/g lipid) and BDE-99 (1.2 ng/g lipid). PBDEs in this population (median 15.4 ng/g lipid) ranked amongst the highest of previously described concentrations in populations in Europe, Asia, New Zealand and Australia, yet it was lower than those found in North American reports. Age was clearly the socio-demographic factor of highest influence on the PBDE distributions. However, unlike usual trends of higher accumulation of POPs through age, the higher concentrations were found in young individuals (< 30 years) rather than in adults (≥ 30 years), with differences of 14%, 31% and 46% in the most abundant congeners (i.e. BDE-209, BDE-99 and BDE-47, respectively). This age-dependent distribution of PBDEs (including the case for BDE-209, which is shown for the first time in this study) is explained by the higher and widespread use of these compounds since the 1980s. In view that these compounds remain highly used, this accumulation pattern is likely to evolve, anticipating an increasing level of PBDE concentrations in future general population surveys, yet probably assuming an age-dependent increase pattern. Socio-economic level was also a determinant of BDE-47 concentrations, but only relevant for the least affluent class, suggesting that lifestyle and environmental conditions in the dwelling place may also contribute to exposure. Nonetheless, gender, body mass index, place of birth, parity and education level did not show any statistically significant influence on the observed PBDE distributions.  相似文献   

13.
The concentrations of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) were determined in a number of foodstuffs purchased in various locations near a hazardous waste incinerator (HWI) in Tarragona County (Catalonia, Spain). The dietary intake of PCDD/Fs by the population of the area under potential influence of the HWI was subsequently estimated. The results were compared with previous surveys performed in the same area in 1998 (baseline), 2002 and 2006. In the present study, the highest WHO-TEQ corresponded to industrial bakery (0.183 ng/kg wet weight, ww), followed by fish (0.156 ng/kg ww), oils and fats (0.112 ng/kg fat weight), and seafood (0.065 ng/kg ww). In contrast, the lowest values were observed in pulses and tubers (0.003 ng/kg ww), and cereals and fruits (0.004 ng/kg ww). The dietary intake of PCDD/Fs by the general population was 33.1 pg WHO-TEQ/day, having fish and seafood (11.6 pg WHO-TEQ), oils and fats (4.61 pg WHO-TEQ), dairy products (3.79 pg WHO-TEQ), and industrial bakery (3.49 pg WHO-TEQ) as the groups showing the highest contribution to the total TEQ. The lowest daily contributions corresponded to pulses (0.08 pg WHO-TEQ) and tubers (0.25 pg WHO-TEQ). This intake was considerably lower than that found in the baseline study, 210.1 pg I-TEQ/day, and also notably lower than that found in the 2002 survey (59.6 pg I-TEQ/day), but slightly higher than the intake estimated in the 2006 survey, 27.8 pg WHO-TEQ/day. The results of this study show that any increase potentially found in the biological monitoring of the general population living in the area under evaluation should not be attributed to dietary exposure to PCDD/Fs.  相似文献   

14.
Phthalates are ubiquitous environmental chemicals with potential detrimental health effects. The purpose of our study was to quantify dietary intake of phthalates and of DEHA (Di-ethylhexyl adipate) using duplicate diet samples and to compare these data with the calculated data based on urinary levels of primary and secondary phthalate metabolites. 27 female and 23 male healthy subjects aged 14-60 years collected daily duplicate diet samples over 7 consecutive days. Overall, 11 phthalates were measured in the duplicates by GC/MS and LC/MS methods. Urinary levels of primary and secondary phthalate metabolites are also available. The median (95th percentile) daily intake via food was 2.4 (4.0) microg/kg b.w. (Di-2-ethylhexyl phthalate, DEHP), 0.3 (1.4) microg/kg b.w. (Di-n-butyl phthalate, DnBP), 0.6 (2.1) microg/kg b.w. (Di-isobutyl phthalate, DiBP) and 0.7 (2.2) microg/kg b.w. for DEHA. MEPH (Mono-2-ethylhexyl phthalate) was detectable only in minor concentrations in the samples, thus conversion of DEHP to MEHP and dietary intake of MEHP were negligible. When comparing back-calculated intake data of the DEHP metabolites with dietary DEHP intake from the day before significant correlations were observed for most of the metabolites. No correlation was found for DnBP and only a weak but significant correlation for DiBP. The median and 95th percentile daily dietary intake of all target analytes did not exceed the recommended tolerable daily intake. Our data indicated that food was the predominant intake source of DEHP, whilst other sources considerably contributed to the daily intake of DnBP and DiBP in an adult population.  相似文献   

15.
Perfluorinated compounds (PFCs), especially perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA), are known to occur throughout the environment and in the human population (Houde et al., 2006). The occurrence of PFCs in human umbilical cord blood and human milk, coupled with the potential developmental toxicity of PFCs, suggests the need for determining the exposure sources and magnitudes of PFCs in infants. In this study, 10 PFCs were measured in 24 pooled samples consisting of 1237 individual human milk samples. The samples were collected from 12 provinces of China in 2007. PFOS and PFOA were the predominant PFCs found in all the samples tested. The geometric mean (GM) and median of the concentrations were 46 pg/mL and 49 pg/mL for PFOS, 46 pg/mL and 34.5 pg/mL for PFOA respectively. A large variation in geographical distribution was observed for PFCs in human milk. High concentrations of PFOA (814 pg/ml for the rural samples and 616 pg/ml for the urban samples) were found in human milk from Shanghai. Estimated dietary intakes (EDI) were established and the median, GM and the highest EDI of the total PFCs were 17.2 ng/kg/d, 17.8 ng/kg/d and 129.1 ng/kg/d respectively. The EDI for PFOA (88.4 ng/kg/d) for Shanghai was close to the tolerable daily intake (100 ng/kg/d) proposed by the German Federal Institute for Risk Assessment and the Drinking Water Commission. The results suggest both mothers and infants have a high exposure to PFCs in the Shanghai region. The potential health impact of postnatal exposure through breastfeeding to infants should therefore be comprehensively evaluated.  相似文献   

16.
Occurrence of flame retardants (FRs) in the indoor environment of highly flame-retarded public facilities is an important concern from the viewpoint of exposure because it is likely that FRs are used to a greater degree in these facilities than in homes. For this study, brominated flame-retardants (BFRs) and organophosphate flame-retardants and plasticizers (OPs), and brominated dibenzo-p-dioxins/furans (PBDD/DFs) were measured in eight floor dust samples taken from a Japanese commercial hotel that was assumed to have many flame-retardant materials. Concentrations of polybrominated diphenylethers (PBDEs) and hexabromocyclododecanes (HBCDs) varied by about two orders of magnitude, from 9.8–1700 ng/g (median of 1200 ng/g) and from 72–1300 ng/g (median of 740 ng/g), respectively. Concentrations of the two types of BFRs described above were most dominant among the investigated BFRs in the dust samples. It is inferred that BFR and PBDD/DF concentrations are on the same level as those in house and office dust samples reported based on past studies. Regarding concentrations of 11 OPs, 7 OPs were detected on the order of micrograms per gram, which are equivalent to or exceed the BFR concentrations such as PBDEs and HBCDs. Concentrations of the investigated compounds were not uniform among dust samples collected throughout the hotel: concentrations differed among floors, suggesting that localization of source products is associated with FR concentrations in dust. Passive air sampling was also conducted to monitor BFRs in the indoor air of hotel rooms: the performance of an air cleaner placed in the room was evaluated in terms of reducing airborne BFR concentrations. Monitoring results suggest that operation of an appropriate air cleaner can reduce both gaseous and particulate BFRs in indoor air.  相似文献   

17.
California residents may experience the highest polybrominated diphenyl ether (PBDE) flame retardant exposures in the United States, the nation with the highest body burdens worldwide. It is hypothesized that Californians' high exposures are due to the state's strict furniture flammability standards. Ingestion of PBDE-contaminated dust, to which children may be particularly susceptible, is a dominant exposure pathway. Low-income populations may also face disparately high exposures due to the presence of older, deteriorated or poorly manufactured furniture treated with PBDEs. We collected up to two dust samples per home (54 samples total), several days apart, from low-income California households in the urban community of Oakland (n=13 homes) and the agricultural community of Salinas (n=15 homes). We measured BDE-47, BDE-99 and BDE-100, the major constituents of the penta-PBDE flame retardant formulation commonly used in furniture. All three PBDE congeners were detected in every sample with concentrations (loadings) ranging from 185 to 126,000ng/g (621-264,000ng/m(2)), 367-220,000ng/g (1550-457,000ng/m(2)), and 84-41,100ng/g (257-85,700ng/m(2)) for BDE-47, BDE-99 and BDE-100, respectively. Median concentrations (loadings) observed in Salinas homes for BDE-47, BDE-99 and BDE-100 were 3100ng/g (10,800ng/m(2)), 5480ng/g (19,500ng/m(2)), and 1060ng/g (3810ng/m(2)), respectively, and in Oakland homes 2780ng/g (10,700ng/m(2)), 4450ng/g (19,100ng/m(2)), and 1050ng/g (4000ng/m(2)), respectively. Maximum concentrations for BDE-47 and BDE-99 are the highest reported to date. Indoor concentrations and loadings did not significantly differ between communities; concentrations and loadings were strongly correlated between collections for all three congeners (Spearman rho=0.79-0.97, p<0.002). We estimated non-dietary ingestion of each congener for one child in each home (n=28 children) and found that estimated intake for BDE-47 and BDE-99 exceeded the U.S. Environmental Protection Agency's recommended chronic reference dose for three and five children, respectively. Children's estimated intake via dust ranged from 1.0 to 599ng/kg/day, 2.0-1065ng/kg/day and 0.5-196ng/kg/day for BDE-47, BDE-99 and BDE-100, respectively. In order to mitigate these exposures, future research must address the factors that contribute to PBDE exposures in low-income homes.  相似文献   

18.
Fluorotelomer alcohols (FTOH) are important precursors of perfluorinated carboxylic acids (PFCA). These neutral and volatile compounds are frequently found in indoor air and may contribute to the overall human exposure to per- and polyfluorinated alkyl substances (PFAS). In this study air samples of ten workplace environments and a car interior were analysed. In addition, extracts and emissions from selected outdoor textiles were analysed in order to establish their potential contribution to the indoor levels of the above-mentioned compounds.Concentrations of FTOHs measured in air ranged from 0.15 to 46.8, 0.25 to 286, and 0.11 to 57.5 ng/m3 for 6:2, 8:2 and 10:2 FTOHs, respectively. The highest concentrations in air were identified in shops selling outdoor clothing, indicating outdoor textiles to be a relevant source of FTOH in indoor workplace environments. Total amounts of FTOH in materials of outdoor textiles accounted for < 0.8–7.6, 12.1–180.9 and 4.65–105.7 μg/dm2 for 6:2, 8:2 and 10:2 FTOHs, respectively. Emission from selected textiles revealed emission rates of up to 494 ng/h.The measured data show that a) FTOHs are present in indoor textiles (e.g. carpets), b) they are released at ambient temperatures and c) indoor air of shops selling outdoor textiles contains the highest levels of FTOH. Exposure of humans to perfluorooctanoic acid (PFOA) through absorption of FTOH and subsequent degradation is discussed on the basis of indoor air levels. Calculation of indoor air-related exposure using the median of the measured air levels revealed that exposure is on the same order of magnitude as the recently reported dietary intakes for a background-exposed population. On the basis of the 95th percentile, indoor air exposure to PFOA was estimated to exceed dietary exposure. However, indoor air-related intakes of FTOH are far below the tolerable daily intake (TDI) of PFOA, indicating that there is no risk to health, even when assuming an unrealistic complete degradation of FTOH into PFOA.  相似文献   

19.
Data on polybrominated diphenyl ether (PBDE) and hexabromocyclododecane (HBCD) concentrations from Stockholm, Sweden, indoor microenvironments were combined with information from detailed questionnaires regarding the sampling location characteristics, including furnishing and equipment present. These were used to elucidate relationships between possible flame-retarded sources and the contaminant concentrations found in air and dust. Median concentration ranges of ΣPenta-, ΣOcta-, ΣDecaBDE and HBCD from all microenvironments were 19-570, 1.7-280, 29-3200 and < 1.6-2 pg/m3 in air and 22-240, 6.1-80, 330-1400 and 45-340 ng/g in dust, respectively. Significant correlations were found between concentrations of some PBDEs and HBCD in air and/or dust and the presence of electronic/electrical devices, foam furniture, PUF mattresses and synthetic bed pillows in, as well as floor area and construction year of the microenvironment. Car interiors were a source to indoor air in dealership halls. Using median and maximum concentrations of ΣPenta-, ΣOcta-, ΣDecaBDE and HBCD in air and dust, adult and toddler (12-24 months) intakes from inhalation and dust ingestion were estimated. Toddlers had higher estimated intakes of ΣPenta-, ΣDecaBDE and HBCD (7.8, 43, 7.6 ng/d, respectively) from dust ingestion than adults (5.8, 38, 6.0 ng/d, respectively). Air inhalation in offices was also an important exposure pathway for ΣPenta-, ΣOcta- and ΣDecaBDE in adults. For ΣPentaBDE and HBCD, air inhalation and dust ingestion play minor roles when compared to previously published Swedish dietary intakes (median exposures). However, in worst case scenarios using maximum concentrations, dust ingestion may represent 77 and 95% of toddler intake for ΣPentaBDE and HBCD, respectively.  相似文献   

20.
Quantifying the competing rates of intake and elimination of persistent organic pollutants (POPs) in the human body is necessary to understand the levels and trends of POPs at a population level. In this paper we reconstruct the historical intake and elimination of ten polychlorinated biphenyls (PCBs) and five organochlorine pesticides (OCPs) from Australian biomonitoring data by fitting a population-level pharmacokinetic (PK) model. Our analysis exploits two sets of cross-sectional biomonitoring data for PCBs and OCPs in pooled blood serum samples from the Australian population that were collected in 2003 and 2009. The modeled adult reference intakes in 1975 for PCB congeners ranged from 0.89 to 24.5 ng/kg bw/day, lower than the daily intakes of OCPs ranging from 73 to 970 ng/kg bw/day. Modeled intake rates are declining with half-times from 1.1 to 1.3 years for PCB congeners and 0.83 to 0.97 years for OCPs. The shortest modeled intrinsic human elimination half-life among the compounds studied here is 6.4 years for hexachlorobenzene, and the longest is 30 years for PCB-74. Our results indicate that it is feasible to reconstruct intakes and to estimate intrinsic human elimination half-lives using the population-level PK model and biomonitoring data only. Our modeled intrinsic human elimination half-lives are in good agreement with values from a similar study carried out for the population of the United Kingdom, and are generally longer than reported values from other industrialized countries in the Northern Hemisphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号