首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 609 毫秒
1.
目的 研究用γ光子线束(60Co模体法)和高能电子线束(电子束法)校准平行板电离室吸收剂量因子方法。方法 电子束法:0.65cc指形电离室放在水中有效点深度2.88 cm (考虑电离室半径),平行板电离室(NACP02)放在水中有效点深度2.70 cm,都距监督指形电离室3 cm处,电子线束能量18 MeV,照射野15 cm×15 cm,SSD=100 cm,照射:300MU,测量;不加监督电离室,并按上述条件照射并测量;根据国际原子能机构(IAEA)381号报告,分别计算平行板电离室空气吸收剂量校准因子。60Co模体法:水模体30 cm×30 cm×30 cm,0.65cc指形电离室放在水中深度5cm,照射野10 cm×10 cm,SSD=80 cm,照射时间60s;水模体25 cm×25 cm×25 cm,平行板电离室放在水中有效点深度5cm,其他条件相同,计算平行板电离室空气吸收剂量校准因子。最后将两种方法校准结果进行比较。结果 电子束方法校准平行板电离室结果为52.30 Gy/C·kg -1(不加监督电离室的值为52.27Gy/C·kg -1)。60Co模体法校准平行板电离室结果为52.33 Gy/C·kg -1结论 电子束法与60Co模体法校准平行板电离室空气吸收剂量因子偏差仅为0.05%。因此,测量电子线束输出剂量,对平行板电离室的校准既可选择高能电子线束也可选择60 Co光子γ线束。  相似文献   

2.
目的:基于国际原子能机构(IAEA)TRS 277和TRS 381《高能电子束和光子束中使用平行电离室的国际剂量测定操作规范》报告,校准加速器配置的不同档能量射线水中的吸收剂量,确保临床放疗中直线加速器输出剂量的精确性。方法:采用ElektaInfinity直线加速器,光子线能量6 MV分别为均整(FF)模式和非均整(FFF)模式;电子线能量分别为4、6、8、10、12和15 MeV。根据IAEATRS277和TRS381报告,使用PTW剂量仪、PTW30013指型电离室和PTW34001平行板电离室分别进行光子线和电子线水中输出剂量的校准,对各步骤的误差进行分析,对比采用不同标准对直线加速器的输出量水中校准的准确性。结果:6 MV的FF模式和FFF模式光子线在水中最大剂量点处的输出量分别为1.003和1.008 cGy/MU;4、6、8、10、12和15 MeV的电子线每档能量在水中最大剂量点处的输出量分别为1.003、1.002、0.998、0.999、1.000和1.003 cGy/MU。每档能量的射线在水中最大剂量点处的输出量校准为1 MU对应1 cCy,误差<1%。结论...  相似文献   

3.
目的 采用平板型电离室和热释光剂量计(TLD)胶囊进行放射治疗临床剂量学验证.方法 随机抽取江苏省5家开展肿瘤放射治疗医院的5台医用加速器,设置不同照射野和源皮距(SSD),加速器电子线标准照射剂量为2.000 Gy,分别采用平板型电离室和TLD方法验证电子线水下最大剂量点的吸收剂量.结果 平板型电离室与TLD验证方法的实测剂量(分别为Dchamber、DTLD)、实测剂量与标准照射剂量的相对偏差及其在±5.00%以外的发生率分别比较,差异均无统计学意义(P>0.05);DTLD与Dchamb.的相对偏差为-2.23%~3.72%.照射野为10 cm×10 cm条件下,SSD分别为100、105、110 cm时,Dchamber与DTLD均随SSD增加呈下降趋势;SSD=110 cm时,Dchamber高于DTLD,差异有统计学意义(P<0.05).结论 作为电子线剂量验证方法的补充,TLD验证方法准确可靠.但仍需要对不同SSD条件下的剂量特性作进一步研究.  相似文献   

4.
目的 60Co γ射线下,建立针尖电离室水中吸收剂量校准方法。方法 参考剂量仪(DOSE 1静电计+FC65-G型电离室)经过中国计量科学研究院校准,得到水中吸收剂量校准因子。采用60Co γ射线,IAEA TRS-398测量程序,用参考剂量仪测量水下10 cm吸收剂量。替代法,用针尖电离室剂量仪进行水吸收剂量测量并对其进行水吸收剂量因子校准。更换60Co γ射线辐射场,用参考剂量仪、针尖电离室剂量仪进行剂量验证测量。结果 参考剂量仪在水下10 cm处,参考条件下测得水吸收剂量结果为0.249 9 Gy。两台针尖电离室剂量仪测量结果分别为0.248 0 Gy和0.250 0 Gy;两台针尖电离室剂量仪测量结果与参考剂量仪测量结果相对偏差均在±0.8%内,针尖电离室剂量仪测量水吸收剂量不确定度为2.8%(k=2)。结论 针尖电离室可用于小野水中吸收剂量的测量。  相似文献   

5.
目的:对新购进QA BeamChecker Plus射野分析仪进行全面质保以评价其性能。方法:分别照射X线和电子束测量面12次,X线时使用PTW参考电离室,计算标准差以评价各电离室重复性。使用QA BeamChecker Plus测得原始数据,使用自编软件利用相关计算公式计算各项射野评价指标与Communication software 2.1.2软件显示值比较,验证其算法的准确性。在对QA BeamChecker Plus加上不同厚度材料和不加任何材料2种情况分别测量分析射野,并比较差异,以检验其抽样深度与使用公式的合理性,并验证推荐标准(3%和5%)的合理性。结果:5个分析射野平板电离室重复性测量均值,中心轴电离室最大标准差为±0.102%(16MeV电子线),上、下、右、左电离室最大标准差分别为±0.104%(6MVX线),±0.090%(6MeV电子线),±0.162%(20MeV电子线),±0.120%(6MVX线)。应用原始数据计算的平坦度、对称性、中心轴重复性与软件显示值符合性为100%。对于X线,3.5cm平面与10cm平面抽样点差别最大为15MVG-T方向对称性2.8(2.2);对于电子束,1.5深度平面与1/2R85深度平面差别最大者为16MeV-EG-T对称性0.8(1.3)。结论:QA BeamChecker Plus射野分析仪所使用平行板电离室重复性达到临床使用标准,所选择的测量深度抽样点及计算公式能反应射野输出指标相关变化。且使用快捷方便,是作为直线加速器射野日常质保检测的理想工具。  相似文献   

6.
目的 对TLD方法核查6 MV光子线束在参考条件和非参考条件下剂量学参数的可靠性进行验证。方法 在参考条件和非参考条件下,用指形电离室对6 MV光子线束在深度、偏离照射野中心、照射野大小和使用45°楔形板等不同条件下剂量进行测量,并与TLD方法测量结果进行对比。结果 TLD测量的6 MV光子线束剂量结果与指形电离室测量的结果比较相对偏差平均为(4.67 ±2.18)%,低于IAEA的允许偏差(不超过±7%)。结论 TLD核查参考条件和非参考条件下6 MV光子线束剂量学参数方法可靠,简单易行。  相似文献   

7.
目的探讨二维空气电离室矩阵MatriXX系统与热释光剂量计(TLD)相结合,测量电子线全身放疗(ETBI)射野剂量参数的可行性。方法用MatriXX系统、固体水模块、仿真人体模型及TLD,测量ETBI射野的百分深度剂量曲线、单野输出剂量和6个不同角度射野照射后的剂量累积因子。结果按照1mm递增测出了ETBI射野的百分深度剂量曲线及ETBI剂量计算所需要的各种校正因子。结论MatriXX系统与TLD相结合测量ETBI射野的剂量学参数非常简便、高效,是ETBI测量的理想工具。  相似文献   

8.
位于直线加速器治疗头内的电离室是非常关键的部件,用于测量加速器输出剂量,属剂量测定系统,直接关系到剂量监测的准确性。我院西门子医用电子直线加速器MD7745之X线和电子线模式分别使用不同的电离室,电离室高压为600V。为保证电离室的正常工作,该机设置有系统联锁与安全联锁保护电路。笔者在此举例说明电离室高压联锁故障的维修思路,希望对该类故障的检修有所启迪。故障现象:主机(MainStrueture)电离室高压(CHAMBERH.V.)系统联锁;控制台电离室高压(CHMBRH.V.)安全联锁,复位灯(RESET)亮出。电路分析:电离…  相似文献   

9.
目的在我国放疗剂量检测不是直接测量水中的吸收剂量,而是先测量照射量或空气比释动能,再通过相关的剂量学规范采用多种修正因子把测量结果转换为吸收剂量,本文将探讨采用不同的剂量学规程测量吸收剂量所产生的偏差。方法本文利用ICRU23、IAEA 277和IAEA 398号技术报告三种放疗剂量学规程对不同型号的电离室在~(60)Coγ射线辐射场中同样条件下分别测量水中的吸收剂量,进行了比对实验研究,分析不同型号的探测器分别采用三种规程所测得的实际剂量差别。结果通过对10个6种型号的电离室在~(60)Coγ射线辐射场中同样条件下分别测量水中的吸收剂量,发现采用三种规程引起的偏差在2%以内,同时,发现不同型号的电离室之间也存在一定的分散性。结论使用不同的剂量学规程进行放疗剂量的测量会引入较大的偏差,为降低我国放疗剂量测量的不确定度,应尽快建立水吸收剂量量值传递系统。  相似文献   

10.
目的核查放射治疗计划系统(TPS)计算病人治疗剂量的非均匀野剂量校正。方法将插有TLD的聚苯乙烯固体模体,聚苯乙烯/肺固体模体,聚苯乙烯/骨固体模体分别经CT扫描,影像分别传入TPS并计算高能X射线下监督单位数,使传递给中心束轴TLD剂量为2 Gy。在高能X射线下完成TLD照射,照射后的TLD经测量、剂量计算,D(TLD)与D(TPS)剂量比值在0.95~1.05范围为可接受范围。结果核查结果表明,光子线束均匀模体轴上(P)剂量和非均匀骨模体轴上(BP)剂量核查结果较好。非均匀肺模体轴上(LP)和离轴(LL)剂量核查结果误差很大。结论光子线束非均匀性剂量校正在放射治疗中是非常重要,尤其是肺组织。校正不当,对于肺组织剂量误差也可达到11.1%,离轴情况下更多达18.4%。对于骨组织剂量误差较小。  相似文献   

11.
The dosimetric features of the Fricke dosimeter in clinical linear accelerator beams are considered. Experimental data were obtained using various nominal energies 6 and 18 MV, 12 and 15 MeV, including the 60Co γ-ray beam. The calibration of the dosimeters was performed using the ionization chamber as a reference dosimeter. Some general characteristics of Fricke dosimeter such as energy dependence, optical density (OD)-dose relationship, reproducibility, accuracy, dose rate dependence were analyzed. The Fricke solution shows linearity in OD-dose relationship, energy independence and a good reproducibility over the energy range investigated. The Fricke dosimeter was found to be suitable for carrying out absorbed dose to water measurements in the calibration of high energy electron and photon beams.  相似文献   

12.
An empirical expression of cavity theory for electron fields is developed in a fashion similar to Burlin's general theory of cavity ionization for photons. It incorporates a term that relates the absorbed dose ratio in the cavity and material medium to the differences in electron scattering. This new expression correlates very well with experimental observations for progressively increasing LiF cavity sizes embedded in different media, the energy response of LiF at high electron energies relative to 60Co and the absorbed dose conversion factors CE in the ionization chamber dosimetry of electron beams.  相似文献   

13.
To reduce the uncertainty of absorbed dose for high energy photon beams, water has been chosen as a reference material by the dosimetry protocols. However, solid phantoms are used as media for absolute dose verification of intensity modulated radiotherapy (IMRT). For the absorbed dose measurement, the fluence scaling factor is used for converting an ionization chamber reading in a solid phantom to absorbed dose to water. Furthermore the depth scaling factor is indispensable in determining the fluence scaling factor. For IMRT beams, a photon energy spectrum is varied by transmitting through a multileaf collimator and attenuating in media. However, the effects of spectral variations on depth scaling have not been clarified yet. In this study, variations of photon energy spectra were determined using the EGS Monte Carlo simulation. The depth scaling factors for commercially available solid phantoms were determined from effective mass attenuation coefficients using photon energy spectra. The results clarified the effect of spectral variation on the depth scaling and produced an accurate scaling method for IMRT beams.  相似文献   

14.
Australian primary standards of air kerma and absorbed dose are realized in 60Co gamma rays. To calibrate the megavoltage photon beams from linear accelerators, radiotherapy centres have their ionization chamber calibrated in a 60Co beam and then use a protocol to transfer this calibration to the higher energy. The radiotherapy community is in the process of changing from the ACPSEM Protocol (Second Edition 1998) based on an air kerma calibration to the IAEA's TRS-398 Code of Practice, based on an absorbed dose to water calibration. To evaluate the shift in absorbed dose resulting from the new protocol, the absorbed dose should be determined using both protocols and compared. We present a formula for this shift which can be used to check the result. To use this formula the centre needs to measure a displacement correction and know the ratio of the air kerma to absorbed dose to water calibration factors at 60Co. We calculate the change they should expect by using the average ratio of the air kerma and absorbed dose to water calibration factors for NE2571 and NE2561 chambers, based on Australian standards, and by estimating the displacement correction from published depth dose data. We find the absorbed dose in a megavoltage photon beam to increase by between 0.1 and 0.6% for NE2571 chambers and between 0.7 and 1.1% for NE2561 chambers, for beams up to 35 MV. The dose measured using TRS-398 is always higher.  相似文献   

15.
目的 探讨热释光测量系统的质量控制方法,验证热释光测量系统能否准确有效的用于环境辐射水平监测。方法 采取的环境辐射监测用热释光测量系统质量控制方法包括热释光测量系统的稳定性检验、热释光探测器的分散性筛选、测量结果不确定度评定,并与高气压电离室测量方法进行对比。结果 读出器预热及测读过程中光源系数变化范围在0.070~0.073,稳定性符合使用要求;热释光探测器的χ2值为2.088,服从正态分布;热释光测量系统满足非线性响应、变异系数和能量响应的计量要求;热释光累积剂量测量结果与高气压电离室相比偏差最大-6.58%。结论 本实验室采取的质控措施可作为同类热释光测量系统的质控措施的参考;本实验室的热释光测量系统通过了各项检验,满足环境辐射累积剂量监测的使用要求。  相似文献   

16.
A thin window parallel-plate ionization chamber was constructed for dose measurement in the build-up region of high energy radiotherapy photon beams. The chamber is an integral part of a perspex block. The entrance window is 12 microns Melinex foil with a thin aluminium surface. Cavity thickness is 1.45 mm. Surface doses for varying field sizes were found to increase almost linearly with the side length of a square field. The surface dose for a 10x10 cm 4 MV photon beam is 12.1% for an open field and this increases to 14.1% with a polycarbonate block tray in the beam. Similarly for a 10 MV photon beam the surface dose is 10.6% for an open field and this increases to 12.4% with a polycarbonate block tray. The difference between the dose for an open field and a field with a polycarbonate block tray inserted becomes more significant for larger field sizes. Electron contamination depth dose curves are determined for a 4 MV and 10 MV photon beam. This is achieved by subtracting a pure photon beam build-up curve generated by an EGS4 Monte Carlo simulation from the experimental build-up curve. The EGS4 curve is a theoretical, electron contamination free curve. The electron contamination curve (of the 10 MV photon beam) has depth dose characteristics similar to that of a broad low energy electron beam.  相似文献   

17.
The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions.  相似文献   

18.
The nature of the background optical density on films exposed to orthovoltage x-rays and electron beams has been studied for correction purposes. A higher than expected background value can be demonstrated by comparing the film scanned beam profile with water phantom ionisation scans of the same beam. A range of 3-5% increased background in the penumbral tail, with energy dependence, has been shown experimentally. Testing the assumption that this increased background is due to Cerenkov radiation produced in the film, Filmstrips were interleaved in a solid water equivalent phantom and exposed to 300kV orthovoltage x-ray beams and 5MeV to 12MeV electron beams. The film stacks were made up of single or multiple bare filmstrips, multiple filmstrips interleaved with black paper, and multiple filmstrips interleaved with overhead transparency sheet. The experimental result demonstrated that visible light was not significantly responsible for an enhanced film optical density, but rather that this was due to scattered radiation, with a complex low energy spectrum, arising from the film silver halide emulsion or base. An improved background correction technique is developed which incorporates this unexpected background value as an added component in the correction applied to the measured optical density. The resulting profiles exhibit improved agreement between film and ionization chamber measurements in the penumbra and tail regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号