首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The syntheses of new fluorene‐based π‐conjugated copolymers; namely, poly((5,5″‐(3′,4′‐dihexyl‐2,2′;5′,2″‐terthiophene 1′,1′‐dioxide))‐alt‐2,7‐(9,9‐dihexylfluorene)) (PFTORT), poly((5,5″″‐(3″,4″‐dihexyl‐2,2′:5′,2′:5″,2‴:5‴,2″″‐quinquethiophene 1″,1″‐dioxide))‐alt‐2,7‐(9,9‐dihexylfluorene)) (PFTTORTT), and poly((5,5‐E‐α‐(2‐thienyl)methylene)‐2‐thiopheneacetonitrile)‐alt‐2,7‐(9,9‐dihexylfluorene)) (PFTCNVT), are reported. In the solid state, PFTORT and PFTCNVT present red–orange emission (with a maximum at 610 nm) while PFTTORTT shows a red emission with a maximum at 666 nm. In all cases, electrochemical measurements have revealed p‐ and n‐dopable copolymers. All these copolymers have been successfully tested in simple light‐emitting diodes and show promising results for orange‐ and red‐light‐emitting devices.  相似文献   

2.
The temperature dependence of field‐effect transistor (FET) mobility is analyzed for a series of n‐channel, p‐channel, and ambipolar organic semiconductor‐based FETs selected for varied semiconductor structural and device characteristics. The materials (and dominant carrier type) studied are 5,5′′′‐bis(perfluorophenacyl)‐2,2′:5′,2″:5″,2′′′‐quaterthiophene ( 1 , n‐channel), 5,5′′′‐bis(perfluorohexyl carbonyl)‐2,2′:5′,2″:5″,2′′′‐quaterthiophene ( 2 , n‐channel), pentacene ( 3 , p‐channel); 5,5′′′‐bis(hexylcarbonyl)‐2,2′:5′,2″:5″,2′′′‐quaterthiophene ( 4 , ambipolar), 5,5′′′‐bis‐(phenacyl)‐2,2′: 5′,2″:5″,2′′′‐quaterthiophene ( 5 , p‐channel), 2,7‐bis((5‐perfluorophenacyl)thiophen‐2‐yl)‐9,10‐phenanthrenequinone ( 6 , n‐channel), and poly(N‐(2‐octyldodecyl)‐2,2′‐bithiophene‐3,3′‐dicarboximide) ( 7 , n‐channel). Fits of the effective field‐effect mobility (µeff) data assuming a discrete trap energy within a multiple trapping and release (MTR) model reveal low activation energies (EAs) for high‐mobility semiconductors 1 – 3 of 21, 22, and 30 meV, respectively. Higher EA values of 40–70 meV are exhibited by 4 – 7 ‐derived FETs having lower mobilities (µeff). Analysis of these data reveals little correlation between the conduction state energy level and EA, while there is an inverse relationship between EA and µeff. The first variable‐temperature study of an ambipolar organic FET reveals that although n‐channel behavior exhibits EA = 27 meV, the p‐channel regime exhibits significantly more trapping with EA = 250 meV. Interestingly, calculated free carrier mobilities (µ0) are in the range of ~0.2–0.8 cm2 V?1 s?1 in this materials set, largely independent of µeff. This indicates that in the absence of charge traps, the inherent magnitude of carrier mobility is comparable for each of these materials. Finally, the effect of temperature on threshold voltage (VT) reveals two distinct trapping regimes, with the change in trapped charge exhibiting a striking correlation with room temperature µeff. The observation that EA is independent of conduction state energy, and that changes in trapped charge with temperature correlate with room temperature µeff, support the applicability of trap‐limited mobility models such as a MTR mechanism to this materials set.  相似文献   

3.
We have fabricated organic field‐effect transistors based on thin films of 2,7‐carbazole oligomeric semiconductors 1,4‐bis(vinylene‐(N‐hexyl‐2‐carbazole))phenylene (CPC), 1,4‐bis(vinylene‐(N′‐methyl‐7′‐hexyl‐2′‐carbazole))benzene (RCPCR), N‐hexyl‐2,7‐bis(vinylene‐(N‐hexyl‐2‐carbazole))carbazole (CCC), and N‐methyl‐2,7‐bis(vinylene‐(7‐hexyl‐N‐methyl‐2‐carbazole))carbazole (RCCCR). The organic semiconductors are deposited by thermal evaporation on bare and chemically modified silicon dioxide surfaces (SiO2/Si) held at different temperatures varying from 25 to 200 °C during deposition. The resulting thin films have been characterized using UV‐vis and Fourier‐transform infrared spectroscopies, scanning electron microscopy, and X‐ray diffraction, and the observed top‐contact transistor performances have been correlated with thin‐film properties. We found that these new π‐conjugated oligomers can form highly ordered structures and reach high hole mobilities. Devices using CPC as the active semiconductor have exhibited mobilities as high as 0.3 cm2 V–1 s–1 with on/off current ratios of up to 107. These features make CPC and 2,7‐carbazolenevinylene‐based oligomers attractive candidates for device applications.  相似文献   

4.
A series of four conjugated molecules consisting of a fluorenone central unit symmetrically coupled to different oligothiophene segments are conceptually designed and synthesized to provide new electroactive materials for application in photovoltaic devices. The combination of electron‐donating oligothiophene building blocks with an electron‐accepting fluorenone unit results in the emergence of a new band assigned to an intramolecular charge transfer transition that gives rise to the extension of the absorption spectral range of the resulting molecules. Detailed spectroscopic and voltammetric investigations show that all studied molecules have highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) level positions, which make them good candidates for the application as electron‐donors in bulk‐heterojunction photovoltaic cells, with (6,6)‐phenyl‐C61‐butyric acid methyl ester (PCBM)‐C60 as electron acceptor component. Moderate device performances, with power conversion efficiencies (PCEs) comprised between 0.3 and 0.6%, were obtained with rigid molecules, containing either the bridging units between the thiophene rings, i.e., (2,7‐bis(4,4′‐dioctyl‐cyclopenta[2,1‐b:3,4‐b′]dithiophen‐2‐yl)‐fluoren‐9‐one (SCPTF) and 2,7‐bis(4‐(dioctylmethylene)‐cyclopenta[2,1‐b:3,4‐b′]dithiophen‐5‐yl)‐fluoren‐9‐one (MCPTF) or a vinylene unit 2,7‐bis(5‐[(E)‐1,2‐bis(3‐octylthien‐2‐yl)ethylene])‐fluoren‐9‐one (TVF), whereas with (2,7‐bis‐(3,3?‐dioctyl‐[2,2′;5′,2″;5″,2?]quaterthiophen‐5‐yl)‐fluoren‐9‐one (QTF) PCE up to 1.2% (under AM 1.5 illumination, 100 mW cm?2, active area 0.28 cm2) was obtained. The strong π‐stacking interactions in the solid state for this oligomer leading to improved morphology could explain the good performances of QTF‐based devices, which rank among the highest recorded for non‐polymeric materials. Consequently, fluorenone‐based non‐polymeric molecules constitute highly attractive materials for solution‐processable solar cell applications.  相似文献   

5.
An improved synthetic approach was developed for the synthesis of 1,4‐bis[9′,9′‐bis(6″‐(N,N,N‐trimethylammonium)‐hexyl)‐fluoren‐2′‐yl]benzene tetrabromide ( 1a ), 1,4‐bis[9′,9′;9″,9″‐tetra(6″′‐(N,N,N‐trimethylammonium)‐hexyl)‐7′,2″‐bisfluoren‐2′‐yl] benzene octabromide ( 1b ) and 1,4‐bis[9′,9′;9″,9″;9″′,9″′‐hexakis(6″″‐(N,N,N‐trimethylammonium)‐hexyl)‐7′,2″,7″,2″′‐trifluoren‐2′‐yl] benzene dodecabromide ( 1c ). These molecules provide a size‐specific series of water‐soluble oligofluorene molecules with increasing numbers of repeat units to model the interactions between cationic conjugated polymers and DNA. Fluorescence quenching and energy‐transfer measurements were performed with 1a – c and single‐stranded (ss) DNA and double‐stranded (ds) DNA, with and without fluorescein (Fl). These studies show that, on a per‐negative‐charge basis, ssDNA quenches the emission of 1a – c more effectively than dsDNA. Furthermore, we show that the energy‐transfer ratios dsDNA–Fl/ssDNA–Fl are dependent on the number of repeat units in 1a – c .  相似文献   

6.
A variety of N ‐hydrogenated/N ‐methylated pyridinium salts are elaborately designed and synthesized. Thermogravimetric and X‐ray photoelectron spectra analysis indicate the intensities of the N? H covalent bonds are strengthened step‐by‐step from 3,3′‐(5′‐(3‐(pyridin‐3‐yl)phenyl)‐[1,1′:3′,1″‐terphenyl]‐3,3″‐diyl)dipyridine (Tm)‐HCl to Tm‐HBr and then Tm‐TfOH, which results in gradually improved cathode interfacial modification abilities. The larger dipole moments of N+? H containing moieties compared to those of the N+? CH3 endow them with more preferable interfacial modification abilities. Electron paramagnetic resonance signals reveal the existence of radical anions in the solid state of Tm‐TfOH, which enables its self‐doping property and high electron mobility up to 1.67 × 10?3 cm2 V?1 s?1. Using the Tm‐TfOH as the cathode interfacial layers (CILs), the phenyl‐substituted poly(para ‐phenylene vinylene)‐based all‐solution‐processed polymer light‐emitting diodes (PLEDs) achieve more preferable device performances than the poly[(9,9‐bis(3′‐(N ,N ‐dimethylamino)propyl)‐2,7‐fluorene)‐alt ‐2,7‐(9,9‐dioctylfluorene)]‐based ones, i.e., high current density of nearly 300 mA cm?2, very high luminance over 15 000 cd m?2 at a low bias of 5 V. Remarkably, the thickness of the CILs has little impact on the device performance and high efficiencies are maintained even at thicknesses up to 85 nm, which is barely realized in PLEDs with small‐molecule‐based electron transporting layers.  相似文献   

7.
Oligomers and regioregular copolymers based on fluorenone subunits are synthesized and used in bulk‐heterojunction photovoltaic cells. These are 2,7‐bis(5‐[(E)‐1,2‐bis(3‐octylthien‐2‐yl)ethylene])‐fluoren‐9‐one (TVF), the product of its oxidative polymerization, that is, (poly[(5,5′‐(bis‐(E)‐1,2‐bis(3‐octylthien‐2‐yl)ethylene]‐alt‐(2,7‐fluoren‐9‐one)]) (PTVF), and an alternate copolymer of fluoren‐9‐one and di‐n‐alkylbithiophene, namely poly[(5,5′‐(3,3′‐di‐n‐octyl‐2,2′‐bithiophene))‐alt‐(2,7‐fluoren‐9‐one)] (PDOBTF). The interpenetrating networks of active layers consisting of these new compounds as electron donors and of methanofullerene [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) as an acceptor exhibit an extended absorption band in the visible part of the spectrum with an absorption edge close to 700 nm. The external power conversion efficiencies (EPCEs) and the external quantum efficiency of the various TVF‐, PTVF‐, and PDOBTF‐based photovoltaic cells have been determined. EPCE values of up to 1 % have been achieved, which demonstrate the potential of fluorenone‐based materials in solar cells. It has also been demonstrated that fluorenone subunits are efficient photon absorbers for the conversion. Interestingly, some cell parameters such as, for example, the fill factor, have been improved as compared to photovoltaic cells with a “classical” poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylenevinylene]/PCBM active layer, fabricated and studied under the same experimental conditions.  相似文献   

8.
A fully conjugated para‐phenylene ladder polymer ( P1 ) and the alternating copolymers {2,7‐[9,9‐bis(2‐ethylhexyl)fluorene]‐5,5′‐(2,2′‐bithiophene)} ( P3 ) and {2,7‐[9,9‐dioctylfluorene]‐5,5′‐(2,2′‐bithiophene)} ( P4 ) have been prepared via metal‐mediated cross‐coupling reactions, using microwaves as a heat source. The procedure, which yields polymeric material in ca. ten minutes, has no adverse effects on the quality of the polymers and displays a high degree of reproducibility. Transfer of the optimized conditions to the synthesis of a new naphthalene‐based polyarylene‐ketone ( P2 ) and a (1,5‐dioctoxynaphthylene‐2,6‐diyl‐alt‐2,2′‐bithiophene‐5,5′‐diyl) copolymer ( P5 ) confirmed the versatility of the procedure and the dramatic reduction in reaction times compared with conventional heating. In the case of the Stille‐type coupling reaction of the electron‐rich, less reactive dibromo monomer 1,5‐dioctoxy‐2,6‐dibromo‐naphthalene, the microwave‐assisted protocol results in a marked increase in both yield and molecular weight.  相似文献   

9.
A series of fourfold oligothienyl‐functionalized perylene bisimides, N,N′‐bis(2,6‐diisopropylphenyl)‐1,6,7,12‐tetra(4‐(7‐[2,2′]bithien‐5‐yl)‐heptanoyloxyphenoxy)perylene‐3,4:9,10‐tetracarboxylic acid bisimide ( 7a ), N,N′‐bis(2,6‐diisopropylphenyl)‐1,6,7,12‐tetra(4‐(7‐[2,2′;5′,2′′]terthien‐5‐yl)‐heptanoyloxyphenoxy)perylene‐3,4:9,10‐tetracarboxylic acid bisimide ( 7b ), and N,N′‐bis(2,6‐diisopropylphenyl)‐1,6,7,12‐tetra(4‐(7‐(5″‐Methyl‐[2,2′;5′,2″]terthien‐5‐yl))‐heptanoyloxyphenoxy)perylene‐3,4:9,10‐tetracarboxylic acid bisimide ( 7c ), have been synthesized. Oligothienyl and perylene bisimide chromophores in these dyads display their characteristic optical UV/vis absorption properties. Upon excitation of the oligothiophene subunits, fluorescence resonance energy transfer (FRET) occurs to the perylene bisimide core. Cyclic voltammetric studies revealed that the reduction of the perylene bisimide moiety is not affected by the presence of oligothiophenes, showing two waves at around ‐0.7 and ‐1.0 V versus Ag/AgCl, respectively. On the other hand, the oxidation of the oligothienyl moieties leads to oxidative coupling for 7a and 7b , providing electroactive sexithiophene‐ and quaterthiophene‐perylene bisimide networks, respectively. Electrochemical deposition of compounds 7a , b was performed and the films were characterized using cyclic voltammetry and in situ conductance, which reveal remarkable p‐type conductivity. Significantly, two separate regimes of electrical conductance have been observed for the films generated from 7b .  相似文献   

10.
Novel fluorene‐based blue‐light‐emitting copolymers with an ultraviolet‐blue‐light (UV‐blue‐light) emitting host and a blue‐light emitting component, 4‐N,N‐diphenylaminostilbene (DPS) have been designed and synthesized by using the palladium‐ catalyzed Suzuki coupling reaction. It was found that both copolymers poly [2,7‐(9,9‐dioctylfluorene)‐alt‐1,3‐(5‐carbazolphenylene)] (PFCz) DPS1 and PFCz‐DPS1‐OXD show pure blue‐light emission even with only 1 % DPS units because of the efficient energy transfer from the UV‐blue‐light emitting PFCz segments to the blue‐light‐emitting DPS units. Moreover, because of the efficient energy transfer/charge trapping in these copolymers, PFCz‐DPS1 and PFCz‐DPS1‐OXD show excellent device performance with a very stable pure blue‐light emission. By using a neutral surfactant poly[9,9‐bis(6'‐(diethanolamino)hexyl)‐fluorene] (PFN‐OH) as the electron injection layer, the device based on PFCz‐DPS1‐OXD5 with the configuration of ITO/PEDOT:PSS/PVK/polymer/PFN‐OH/Al showed a maximum quantum efficiency of 2.83 % and a maximum luminous efficiency of 2.50 cd A–1. Its CIE 1931 chromaticity coordinates of (0.156, 0.080) match very well with the NTSC standard blue pixel coordinates of (0.14, 0.08). These results indicate that this kind of dopant/host copolymer could be a promising candidate for blue‐light‐emitting polymers with high efficiency, good color purity, and excellent color stability.  相似文献   

11.
A series of 2,7‐disubstituted carbazole (2,7‐carb) derivatives incorporating arylamines at the 2 and 7 positions are synthesized via palladium‐catalyzed C–N or C–C bond formation. These compounds possess glass transition temperatures ranging from 87 to 217 °C and exhibit good thermal stabilities, with thermal decomposition temperatures ranging from 388 to 480 °C. They are fluorescent and emit in the purple‐blue to orange region. Two types of organic light emitting diodes (OLEDs) were constructed from these compounds: (I) indium tin oxide (ITO)/2,7‐carb (40 nm)/1,3,5‐tris(N‐phenylbenzimidazol‐2‐yl)benzene (TPBI, 40 nm)/Mg:Ag; and (II) ITO/2,7‐carb (40 nm)/tris(8‐hydroxyquinoline) aluminum (Alq3, 40 nm)/Mg:Ag. In type I devices, the 2,7‐disubstituted carbazoles function as both hole‐transporting and emitting material. In type II devices, light is emitted from either the 2,7‐disubstituted carbazole layer or Alq3. The devices appear to have a better performance compared to devices fabricated with their 3,6‐disubstituted carbazole congeners. Some of the new compounds exhibit ambipolar conductive behavior, with hole and electron mobilities up to 10–4 cm2 V–1 s–1.  相似文献   

12.
Eight random and alternating copolymers PF‐DTBTA derived from 2,7‐fluorene and 4,7‐dithienylbenzotriazole (DTBTA) were synthesized. Thin solid films of the energy‐transfer copolymers possess high absolute photoluminescence (PL) quantum yields (ΦPL) between 60?72%. Inserting PVK layer between anode and emissive layer could show higher electroluminescence (EL) performances due to PVK‐enhanced hole injection. Random copolymers PF‐DTBTA1?15, with DTBTA molar contents from 1% to 15%, displayed yellow EL spectra with high external quantum efficiency (EQEmax) up to 5.78%. PF‐DTBTA50, the alternating copolymer, showed an orange EL with EQEmax of 3.3%. The good ΦPL and EQEmax of the PF‐DTBTA50 with very high DTBTA content indicate that DTBTA is a high efficiency chromophore with very low concentration quenching effects in the solid state PL and EL processes. PF‐DTBTA0.03?0.1 could emit white EL due to partial energy transfer from fluorene segments to DTBTA units. Moreover, white EL devices, with forward‐viewing maximum luminous efficiency up to 11 cd/A and stable white EL spectra (CIE coordinates of (0.33, 0.43)) in high current range from 5 mA to 60 mA, could be realized from the non‐doped polymer with simple binary structure. Our results suggest that DTBTA has big potential to construct high performanced EL polymers or oligomers.  相似文献   

13.
By using Ni0‐mediated polymerization, we have systematically synthesized a series of fluorene‐based copolymers composed of blue‐, green‐, and red‐light‐emitting comonomers with a view to producing polymers with white‐light emission. 2,7‐Dibromo‐9,9‐dihexylfluorene, {4‐(2‐[2,5‐dibromo‐4‐{2‐(4‐diphenylamino‐phenyl)‐vinyl}‐phenyl]‐vinyl)‐phenyl}‐diphenylamine (DTPA), and 2‐{2‐(2‐[4‐{bis(4‐bromo‐phenyl)amino}‐phenyl]‐vinyl)‐6‐tert‐butyl‐pyran‐4‐ylidene}‐malononitrile (TPDCM) were used as the blue‐, green‐, and red‐light‐emitting comonomers, respectively. It was found that the emission spectra of the resulting copolymers could easily be tuned by varying their DTPA and TPDCM content. Thus with the appropriate red/green/blue (RGB) unit ratio, we were able to obtain white‐light emission from these copolymers. A white‐light‐emitting diode using the polyfluorene copolymer containing 3 % green‐emitting DTPA and 2 % red‐emitting TPDCM (PG3R2) with a structure of indium tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonic acid)/PG3R2/Ca/Al was found to exhibit a maximum brightness of 820 cd m–2 at 11 V with Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.35), which are close to the standard CIE coordinates for white‐light emission (0.33,0.33).  相似文献   

14.
The preparation and characterization of new, tailor‐made polymeric membranes using poly(styrene‐b‐butadiene‐b‐styrene) (SBS) triblock copolymers for gas separation are reported. Structural differences in the copolymer membranes, obtained by manipulation of the self‐assembly of the block copolymers in solution, are characterized using atomic force microscopy, transmission electron microscopy, and the transport properties of three gases (CO2, N2, and CH4). The CH4/N2 ideal selectivity of 7.2, the highest value ever reported for block copolymers, with CH4 permeability of 41 Barrer, is obtained with a membrane containing the higher amount of polybutadiene (79 wt%) and characterized by a hexagonal array of columnar polystyrene cylinders normal to the membrane surface. Membranes with such a high separation factor are able to ease the exploitation of natural gas with high N2 content. The CO2/N2 ideal selectivity of 50, coupled with a CO2 permeability of 289 Barrer, makes SBS a good candidate for the preparation of membranes for the post‐combustion capture of carbon dioxide.  相似文献   

15.
2,7‐Bis(p‐methoxyphenyl‐m′‐tolylamino)‐9,9‐dimethylfluorene ( 1′ ), 2,7‐bis(phenyl‐m′‐tolylamino)‐9,9‐dimethylfluorene ( 2′ ) and 2,7‐bis(p‐fluorophenyl‐m′‐tolylamino)‐9,9‐dimethylfluorene ( 3′ ) have been synthesized using the palladium‐catalyzed reaction of the appropriate diarylamines with 2,7‐dibromo‐9,9‐dimethylfluorene. These molecules have glass‐transition temperatures 15–20 °C higher than those for their biphenyl‐bridged analogues, and are 0.11–0.14 V more readily oxidized. Fluorescence spectra and fluorescence quantum yields for dimethylfluorene‐bridged and biphenyl‐bridged species are similar, but the peaks of the absorption spectra of 1′ – 3′ are considerably red‐shifted relative to those of their biphenyl‐bridged analogues. Time‐of‐flight hole mobilities of 1′ – 3′ /polystyrene blends are in a similar range to those of the biphenyl‐bridged analogues. Analysis according to the disorder formalism yields parameters rather similar to those for the biphenyl species, but with somewhat lower zero‐field mobility values. Density functional theory (DFT) calculations suggest that the enforced planarization of the fluorene bridge leads to a slightly larger reorganization energy for the neutral/cation electron‐exchange reaction than in the biphenyl‐bridged system. Organic light‐emitting diodes have been fabricated using 1′ – 3′ /polystyrene blends as the hole‐transport layer and tris(8‐hydroxy quinoline)aluminium as the electron‐transport layer and lumophore. Device performance shows a correlation with the ionization potential of the amine materials paralleling that seen in biphenyl‐based systems, and fluorene species show similar performance to biphenyl species with comparable ionization potential.  相似文献   

16.
A new class of ladder‐type dithienosilolo‐carbazole ( DTSC ), dithienopyrrolo‐carbazole ( DTPC ), and dithienocyclopenta‐carbazole ( DTCC ) units is developed in which two outer thiophene subunits are covalently fastened to the central 2,7‐carbazole cores by silicon, nitrogen, and carbon bridges, respectively. The heptacyclic multifused monomers are polymerized with the benzothiadiazole ( BT ) acceptor by palladium‐catalyzed cross‐coupling to afford three alternating donor‐acceptor copolymers poly(dithienosilolo‐carbazole‐alt‐benzothiadiazole) ( PDTSCBT) , poly(dithienocyclopenta‐carbazole‐alt‐benzothiadiazole) ( PDTCCBT), and poly(dithienopyrrolo‐carbazole‐alt‐benzothiadiazole) ( PDTPCBT) . The silole units in DTSC possess electron‐accepting ability that lowers the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of PDTSCBT , whereas stronger electron‐donating ability of the pyrrole moiety in DTPC increases the HOMO and LUMO energy levels of PDTPCBT . The optical bandgaps (Egopt) deduced from the absorption edges of thin film spectra are in the following order: PDTSCBT (1.83 eV) > PDTCCBT (1.64 eV) > PDTPCBT (1.50 eV). This result indicated that the donor strength of the heptacyclic arenes is in the order: DTPC > DTCC > DTSC . The devices based on PDTSCBT and PDTCCBT exhibited high hole mobilities of 0.073 and 0.110 cm2 V?1 s?1, respectively, which are among the highest performance from the OFET devices based on the amorphous donor‐acceptor copolymers. The bulk heterojunction photovoltaic device using PDTSCBT as the p‐type material delivered a promising efficiency of 5.2% with an enhanced open circuit voltage, Voc, of 0.82 V.  相似文献   

17.
A highly stable new electrochromic polymer, poly(1,4‐bis(2‐(3′,4′‐ethylenedioxy)thienyl)‐2‐methoxy‐5‐2″‐ethylhexyloxybenzene) (P(BEDOT‐MEHB)) was synthesized and its electrochemical and electrochromic properties are reported. P(BEDOT‐MEHB) showed a very well defined electrochemistry with a relatively low oxidation potential of the monomer at + 0.44 V versus Ag/Ag+, E1/2 at – 0.35 V versus Ag/Ag+ and stability to long‐term switching up to 5000 cycles. A high level of stability to over‐oxidation has also been observed as this material shows limited degradation of its electroactivity at potentials 1.4 V above its half‐wave potential. Spectroelectrochemistry showed that the absorbance of the π–π* transition in the neutral state is blue‐shifted compared to PEDOT, displaying a maximum at 538 nm (onset at 640 nm), thus giving an almost colorless, highly transparent oxidized polymer with a bandgap of 1.95 eV. Different colors observed at different oxidation levels and strong absorption in the near‐IR make this polymer a good candidate for several applications.  相似文献   

18.
The electron‐transporting material (ETM) is one of the key factors to determine the efficiency and stability of organic light‐emitting diodes (OLEDs). A novel ETM with a “(Acceptor)n–Donor–(Acceptor)n” (“(A)n–D–(A)n”) structure, 2,7‐di([2,2′:6′,2″‐terpyridin]‐4′‐yl)‐9,9′‐spirobifluorene (27‐TPSF), is synthesized by combining electron‐withdrawing terpyridine (TPY) moieties and rigid twisted spirobifluorene, in which the TPY moieties facilitate electron transport and injection while the spirobifluorene moiety ensures high triplet energy (T1 = 2.5 eV) as well as enhances glass transition temperature (Tg = 195 °C) for better stability. By using tris[2‐(p‐tolyl)pyridine]iridium(III) (Ir(mppy)3) as the emitter, the 27‐TPSF‐based device exhibits a maximum external quantum efficiency (ηext, max) of 24.5%, and a half‐life (T50) of 121, 6804, and 382 636 h at an initial luminance of 10 000, 1000, and 100 cd m?2, respectively, which are much better than the commercialized ETM of 9,10‐bis(6‐phenylpyridin‐3‐yl)anthracene (DPPyA). Furthermore, a higher efficiency, a ηext, max of 28.2% and a maximum power efficiency (ηPE, max) of 129.3 lm W?1, can be achieved by adopting bis(2‐phenylpyridine)iridium(III)(2,2,6,6‐tetramethylheptane‐3,5‐diketonate) (Ir(ppy)2tmd) as the emitter and 27‐TPSF as the ETM. These results indicate that the derivative of TPY to form “(A)n–D–(A)n” structure is a promising way to design an ETM with good comprehensive properties for OLEDs.  相似文献   

19.
A new method to synthesize an electron‐rich building block cyclopentadithienothiophene (9H‐thieno‐[3,2‐b]thieno[2″,3″:4′,5′]thieno[2′,3′:3,4]cyclopenta[1,2‐d]thiophene, CDTT) via a facile aromatic extension strategy is reported. By combining CDTT with 1,1‐dicyanomethylene‐3‐indanone endgroups, a promising nonfullerene small molecule acceptor (CDTTIC) is prepared. As‐cast, single‐junction nonfullerene organic solar cells based on PFBDB‐T: CDTTIC blends exhibit very high short‐circuit currents up to 26.2 mA cm?2 in combination with power conversion efficiencies over 11% without any additional processing treatments. The high photocurrent results from the near‐infrared absorption of the CDTTIC acceptor and the well‐intermixed blend morphology of polymer donor PFBDB‐T and CDTTIC. This work demonstrates a useful fused ring extension strategy and promising solar cell results, indicating the great potential of the CDTT derivatives as electron‐rich building blocks for constructing high‐performance small molecule acceptors in organic solar cells.  相似文献   

20.
Light‐induced generation of charges into an electron acceptor–donor phase‐segregated blend is studied. The blend is made of highly ordered nanoscopic crystals of 3″‐methyl‐4″‐hexyl‐2,2′:5′,2″:5″,2?:5?,2″″‐quinquethiophene‐1″,1″‐dioxide embedded into a regioregular poly(3‐hexylthiophene) matrix, acting as acceptor and donor materials, respectively. Kelvin probe force microscopy investigations reveal a tendency for the acceptor nanocrystals to capture the generated electrons whereas the donor matrix becomes more positively charged. The presence of particular positively charged defects, i.e., nanocrystals, is also observed within the film. The charging and discharging of both materials is studied in real time, as well as the effect of different acceptor–donor ratios. Upon prolonged thermal annealing at high temperatures the chemical structure of the blend is altered, leading to the disappearance of charge separation upon light irradiation. The obtained results allow a better understanding of the correlation between the nanoscopic structure of the photoactive material and solar‐cell performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号