首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plant protein phosphatase 2Cs(PP2Cs) play an essential role in response to stress and abscisic acid(ABA) signaling pathway. However, to date, no systemic characterization of the PP2Cs has yet been conducted in potato(Solanum tuberosum L.). In the study, a comprehensive research was performed on genome-wide identification and expression analysis of StPP2C genes in potato. A total of 78 potato StPP2C genes were identified based on specific structure of PP2C domain, which were distributed across 11 out of 12 potato chromosomes and divided into 12(A–L) phylogenetic branches. The result from gene duplication analysis showed that 14 StPP2Cs were involved in gene tandem duplication and 8 genes formed fragment duplication events, which indicated that both tandem and fragment duplication contributed to the expansion of the gene family in evolution. Exon–intron structural analysis showed that they had a wide range of exon numbers. Analysis of protein conservative motif demonstrated that StPP2Cs contained more similar motif structures in the same phylogenetic branches. The cis-elements in StPP2C gene promoter regions were mainly responded to light, phytohormone and abiotic stress. Most of them exhibited tissue-specific expression patterns, and some members could differentially express under abiotic stress. The evidence suggested that StPP2C genes may contribute to different functions in several physiological stress and environmental stress conditions. This study could provide new insights to further investigate StPP2C functional characteristics responding to various stresses in potato.  相似文献   

2.
3.
Hexokinase(HXK) is the first irreversible catalytic enzyme in the glycolytic pathway, which not only provides energy for plant growth and development but also serves as a signaling molecule in response to environmental changes. However, the evolutionary pattern of the HXK gene family in apple remains unknown. In this study, a total of nine HXK genes were identified in the Malus×domestica genome GDDH13 v1.1. The physiological and biochemical properties, exonintron structures, conserved motifs, and cis-elements of the MdHXK genes were determined. Predicted subcellular localization indicated that the MdHXK genes were mainly distributed in the mitochondria, cytoplasm, and nucleus. Gene duplication revealed that whole-genome duplication(WGD) and segmental duplication played vital roles in MdHXK gene family expansion. The ω values of pairwise MdHXK genes indicated that this family was subjected to strong purifying selection during apple domestication. Additionally, five subfamilies were classified, and recent/old duplication events were identified based on phylogenetic tree analysis. Different evolutionary rates were estimated among the various HXK subfamilies. Moreover, divergent expression patterns of the Md HXK genes in four source-sink tissues and at five different apple fruit developmental stages indicated that they play vital roles in apple fruit development and sugar accumulation. Our study provides a theoretical basis for future elucidation of the biological functions of the MdHXK genes during apple fruit development.  相似文献   

4.
Radiation sensitivity proteins-23(RAD23)are DNA repair factors participate in the ubiquitin/proteasome system(UPS). Although the genome-wide analysis of RAD23 family members has been conducted in some species,little is known about RAD23 genes in apple(Malus×domestica Borkh.). We analyzed this gene family in M. domestica in terms of genomic locations,protein and promoter structures,and expressions in response to stresses. Various members showed a ubiquitous pattern of expression in all selected apple parts. Their expressions were altered under chilling,heat,and hydrogen peroxide treatments,as well as abscisic acid(ABA)treatment and water deficiency,suggesting their possible roles in plant stress responses. These results provide essential information about RAD23 genes in apple and will contribute to further functional studies.  相似文献   

5.
Phosphorus (P) is one of the three primary macronutrients that are required in large amounts for plant growth and development. To better understand molecular mechanism of maize and identify relevant genes in response to phosphorus deficiency, we used Solexa/Illumina's digital gene expression (DGE) technology to investigate six genome-wide expression profiles of seedling roots of the low-P tolerant maize inbred line 178. DGE studies were conducted at 6, 24 and 72 h under both phosphorus deficient and sufficient conditions. Approximately 3.93 million raw reads for each sample were sequenced and 6 816 genes exhibited significant levels of differential expressions in at least one of three time points in response to P starvation. The number of genes with increased expression increased over time from 6 to 24 h, whereas genes with decreased expression were more abundant at 72 h, suggesting a gradual response process for P deficiency at different stages. Gene annotations illustrated that most of differentially expressed genes (DEGs) are involved in different cellular and molecular processes such as environmental adaptation and carbohydrate metabolism. The expression of some known genes identified in other plants, such as those involved in root architecture, P metabolism and transport were found to be altered at least two folds, indicating that the mechanisms of molecular and morphological adaptation to P starvation are conserved in plants. This study provides insight into the general molecular mechanisms underlying plant adaptation to low-P stress and thus may facilitate molecular breeding for improving P utilization in maize.  相似文献   

6.
7.
Plant calcium-dependent protein kinases(CDPKs) play important roles in diverse physiological processes by regulating the downstream components of calcium signaling. To date, only a few species of the plant CDPK gene family have been functionally identified. In addition, there has been no systematic analysis of the CDPK family in cotton. Here, 41 putative cotton CDPK(Gr CDPK) genes were identified via bioinformatics analysis of the entire genome of Gossypium raimondii and were classified into four groups based on evolutionary relatedness. Gene structure analysis indicated that most of these Gr CDPK genes share a similar intron-exon structure(7 or 8 exons), strongly supporting their close evolutionary relationships. Chromosomal distributions and phylogenetics analysis showed that 13 pairs of Gr CDPK genes arose via segmental duplication events. Furthermore, using microarray data of upland cotton(G. hirsutum L.), comparative profiles analysis of these Gh CDPKs indicated that some of the encoding genes might be involved in the responses to multiple abiotic stresses and play important regulatory roles during cotton fiber development. This study is the first genome-wide analysis of the CDPK family in cotton, and it will provide valuable information for the further functional characterization of cotton CDPK genes.  相似文献   

8.
Through bioinformatic data mining, 10 SnRK2 and 31 CIPK genes were identified from sorghum genome. They are unevenly distributed in the sorghum chromosomes. Most SnRK2 genes have 8 introns, while the CIPK genes have a few (no intron or less than 3 introns) or more than I0 introns. Phylogenetic analysis revealed that SnRK2 genes belong to one cluster and CIPK genes form the other independent cluster. The sorghum SnRK2s are subgrouped into three parts, and CIPK into five parts. More than half SnRK2 and CIPK genes present in homologous pairs, suggesting gene duplication may be due to the amplification of SnRK family genes. The kinase domains of SnRK2 family are highly conserved with 88.40% identity, but those of the CIPK family are less conserved with 63.72% identity. And the identity of sorghum CBLinteracting NAF domains of CIPKs is 61.66%. What's more, regarding to the sorghum SnRK2 and CIPK kinases, they are characterized with distinct motifs and their subcellular localization is not necessarily the same, which suggests they may be divergent in functions. Due to less conserved sequences, complex subcellular localization, and more family members, sorghum CIPK genes may play more flexible and multiple biological functions. According to the phylogenetic analysis of SnRK genes and SnRK functional studies in other plants, it is speculated that sorghum SnRK2 and CIPK genes may play important roles in stress response, growth and development.  相似文献   

9.
10.
The importance of zinc (Zn) as a micronutrient essential for plant growth and development is becoming increasingly apparent. Much of the world’s soil is Zn-deficient, and soil-based Zn deficiency is often accompanied by Zn deficiency in human populations. MicroRNAs (miRNAs) play important roles in the regulation of plant gene expression at the level of translation. Many miRNAs involved in the modulation of heavy metal toxicity responses in plants have been identiifed;however, the role of miRNAs in the plant Zn deifciency response is almost completely unknown. Using high-throughput Solexa sequencing, we identiifed several miRNAs that respond to Zn deifciency in Brassica juncea roots. At least 21 conserved candidate miRNA families, and 101 individual members within those families, were identiifed in both the control and the Zn-deifcient B. juncea roots. Among this, 15 miRNAs from 9 miRNA families were differentially expressed in the control and Zn-deifcient plants. Of the 15 differentially expressed miRNAs, 13 were up-regulated in the Zn-deifcient B. juncea roots, and only two, miR399b and miR845a, were down-regulated. Bioinformatics analysis indicated that these miRNAs were involved in modulating phytohormone response, plant growth and development, and abiotic stress responses in B. juncea roots. These data help to lay the foundation for further understanding of miRNA function in the regulation of the plant Zn deifciency response and its impact on plant growth and development.  相似文献   

11.
The enzymemyo-inositol-1-phosphate synthase (MIPS EC 5.5.1.4) catalyzes the first step ofmyo-inositol biosynthesis, a product that plays crucial roles in plants as an osmoprotectant, transduction molecule, cell wall constituent and production of stress related molecule. Previous reports highlighted an important role of MIPS family genes in abiotic stresses particularly under salt stress tolerance in several plant species; however, little is known about the cellular and physiological functions ofMIPS2 genes under abiotic conditions. In this study, a novel salt stress responsive gene designatedGsMIPS2 from wild soybean Glycine soja07256 was functionally characterized contained an open reading frame (ORF) of 1 533 bp coding a peptide sequence of 510 amino acids along with mass of 56 445 ku. Multiple sequence alignment analysis revealed its 92%-99% similarity with other MIPS family members in legume proteins. Quantitative real-time PCR results demonstrated thatGsMIPS2 was induced by salt stress and expressed in roots of soybean. The positive function ofGsMIPS2 under salt response at different growth stages of transgenicArabidopsis was also elucidated. The results showed thatGsMIPS2 transgenic lines displayed increased tolerance as compared to WT andatmips2 mutant lines under salt stress. Furthermore, the expression levels of some salt stress responsive marker genes, including KIN1,RD29A, RD29B,P5CsandCOR47 were significantly up-regulated inGsMIPS2 overexpression lines than wild type andatmips2 mutant. Collectively, these results suggested thatGsMIPS2 gene was a positive regulator of plant tolerance to salt stress. This was the first report to demonstrate that overexpression ofGsMIPS2 gene from wild soybean improved salt tolerance in transgenicArabidopsis.  相似文献   

12.
Maize roots are important component for plant adaptation to soil water deficits because they are supposed to take up water and necessary solutes from the soil. In the present study, the drought-induced genes were isolated in maize roots. A suppression subtractive hybridization protocol was applied to construct a forward subtractive cDNA library from CN165 for drought-stressed maize roots and a number of drought-induced genes were isolated. Totally, 126 uniESTs (containing 82 singlets and 44 contigs) were obtained from 503 available ESTs sequences after macroarray hybridization. UniESTs were analyzed using BLASTN and BLASTX and the results showed that 92% of the uniESTs had homolgous sequences in maize nr database by BLASTN. About 89% of uniESTs appeared the homlogous amino acid sequences in rice protein database but not in maize protein database by BLASTX, implying that those genes are likely new functional genes in maize. Function analysis showed that those genes were involved in a broad spectrum of biological pathways, mainly in signaling and regulatory pathways related to stress tolerance.  相似文献   

13.
To provide the useful information for the choice of molecular marker used in marker-assisted selection of drought tolerance, it is necessary to find out more candidate genes and fulfill the information gaps in gene expression regulation under drought stress. In this study, we isolated four differentially expressed cDNA fragments from leaves of a droughttolerant inbred line by suppression subtractive hybridization and reverse Northern hybridization, and validated their differential expression patterns among six inbred lines with different drought tolerance in response to drought stress by quantitative real-time PCR. Sequence similarity analysis indicated that two of four differentially expressed cDNA showed homology to gene DegP encoding trypsin-like serine protease, and gene PGAM-i encoding cofactor-independent phosphoglyceromutase, respectively. Expressions of the genes corresponding to four cDNA fragments was decreased at 6 h after drought stress treatment in most of the six inbred lines, and then returned to the control level with further stress in three of the tolerant inbred lines. The expression of the gene PGAM-i and the genes corresponding to fragments E4 and F4 were increased to a high level in tolerant inbred line 81565. In the two drought-sensitive inbred lines (Dan340 and ES40), the expression of these genes was still down-regulated. The probable mechanisms of these genes in response to drought stress were discussed. These results indicated that the drought-tolerant inbred lines upregulated the expression of the drought-tolerant candidate genes, in contrast, drought-sensitive inbred lines downregulated the expression of the genes.  相似文献   

14.
15.
16.
17.
18.
Ser/Arg-rich (SR) genes encode proteins that play pivotal roles in both constitutive and alternative splicing of pre-mRNA. However, not much effort has been made to investigate the alternative splicing of their own pre-mRNA. In this study, we conducted comprehensive analyses of pre-mRNA splicing for 22 SR genes in three rice (Oryza sativa L.) ecotypes indica, japonica and javanica. Using different ecotypes we characterized the variations in expression and splicing patterns of rice SR genes in different tissues and at different developmental stages. In addition, we compared the divergence in expression and splicing patterns of SR genes from seedlings of different rice ecotypes in response to hormones application and environmental stresses. Our results revealed the complexity of alternative splicing of SR genes in rice. The splicing varies in different tissues, in different ecotypes, in response to stresses and hormones. Thus, our study suggested that SR genes were subjected to sophisticated alternative splicing although their encoding proteins were involved in the splicing process.  相似文献   

19.
The westem flower thrips, Frankliniella occidental& (Pergande) is a highly invasive pest that is able to exploit many crops across a wide range of environmental conditions. Five full-length cDNAs of heat shock protein (HSP) genes (Fo-HSP90, Fo-HSP70, Fo-HSP60, Fo-HSP40 and Fo-HSP28.9) were cloned from F. occidentalis, and their expression profiles were investigated under conditions of thermal stress and insecticide exposure, and at different stages during development, using real-time quantitative PCR. All five gene sequences showed high similarity to homologs in other species, indicating the conserved fimction of this gene family. HSP60 represents an informative phylogenetic marker at the ordinal taxonomic level within Insecta, but HSP90, which has two homologous copies in Hymenoptera, was not informative. The expression of Fo-HSPs under thermal stress suggests that Fo-HSP90, Fo-HSP70, and Fo-HSP28.9 are inducible by both cold and heat stress, Fo-HSP40 is only heat-inducible, and Fo-HSP60 is thermally insensitive. There were two patterns of cold induction of Fo-HSPs: one is from 0 to 4℃ and the other is around -8℃. All five Fo-HSPs genes were induced by exposure to sublethal concentrations of the insecticide avermectin. The expression of the five Fo-HSPs during different developmental stages suggests that they all play a role in development of F. occidentalis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号