首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
《Ceramics International》2022,48(1):642-647
In this article, the thermoelectric properties of five different polymorphs of gallium phosphide (GaP) such zinc-blende (zb-GaP), wurtzite (wz-GaP), sphalerite (sp-GaP), Beryllium oxide (β-BeO-GaP), and Silicon carbide (SiC-GaP) have been reported in detail. In this regard, the prerequisite electronic structure calculations have been performed in the framework of density functional theory (DFT), whereas the results for thermoelectric properties have been obtained via Boltzmann transport theory (BTT). We found that these GaP polymorphs exhibit relatively higher electrical conductivity corresponding to holes as a result larger power factors (PFs) have been realized for n-type doping than p-type. The highest values of PF corresponding to n-type doping have been recorded as 27.492 × 1010 W/mK2s, 27.999 × 1010 W/mK2s, 29.491 × 1010 W/mK2s, 15.706 × 1010 W/mK2s, and 26.557 × 1010 W/mK2s respectively, for zb-GaP, wz-GaP, sp-GaP, β-BeO- GaP, and SiC-GaP. Moreover, their PF has been further enhanced by the increase in temperature. In contrast, the Seebeck coefficients (thermopowers) have been found relatively larger for p-type doping than n-type. The relatively large thermopowers and lower thermal conductivity for p-type doping have resulted in the enhancement of Figure-of-merit (zT) by holes rather than electrons. The highest zT values have been recorded as 0.997, 1.004, 0.998, 1.001, and 1.010 in the case of zb-GaP, wz-GaP, sp-GaP, β-BeO-GaP, and SiC-GaP respectively. Our study indicates the adequate potential of these different polymorphs of GaP for thermoelectric applications.  相似文献   

2.
In a search for new thermoelectric materials, indium oxide (In2O3) was selected as a candidate for high-temperature thermoelectric oxide materials due to its intrinsically low thermal conductivity (<2 W/mK) and ZT values around 0.05. However, low electrical conductivity is a factor limiting the thermoelectric performance of this oxide, and was addressed in this study by Mo doping. It was found that Mo is soluble in In2O3 but forms secondary phases at a fraction near x = 0.06 and higher. Mo was found to be unsuitable for heavy n-type doping necessary to improve the thermoelectric performance of the oxide to the desired level (ZT = 1). However, the experimental data enabled us to analyze the electrical conductivity behavior and the Seebeck coefficient of doped In2O3 with different carrier concentrations, predicting a theoretically achievable maximum power factor value of 1.77 × 10?3 W/mK2 at an optimum carrier concentration. This estimation predicts the highest ZT value of 0.75 at 1073 K, assuming the lattice thermal conductivity value remaining at an amorphous level.  相似文献   

3.
Higher manganese silicide (HMS) is a naturally abundant, environmentally friendly, and mechanically robust P-type thermoelectric (TE) semiconductor. Isoelectronic doping elements Re and Ge are used to partially occupy cation (Mn) and anion (Si) sites, respectively. Compared with the single Re-doped strategy, TE performance is further improved in the isoelectronic double-doped Mn0.96Re0.04(Si0.96Ge0.04)1.79 composition. The electrical conductivity (∼54.2 × 103 S m–1 at 823 K) is double that of pure HMS (∼26.1 × 103 S m–1), whereas the power factor increases from ∼1.42 × 10–3 W m–1 K–2 to ∼1.80 × 10–3 W m–1 K–2 due to the increase in carrier concentration caused by the decreased band gap (from 0.82 eV to 0.74 eV), as well as the embedding of the Si, Ge nanodispersions with low work functions. Furthermore, the substitution of Re and Ge increases the amounts of lattice defects, and the presence of nanoscale Ge precipitates cause the broadband phonon-scattering effect in the HMS matrix. Finally, the lattice thermal conductivity at 673 K decreases from ∼2.18 W m–1 K–1 to ∼1.60 W m–1 K–1. The zT value at 823 K increases by ∼36% from 0.45 to 0.61. The strategy of cation and anion double doping can effectively improve the TE properties of materials, which has significance for the optimization of other materials.  相似文献   

4.
《Ceramics International》2017,43(10):7784-7788
The thermoelectric transport properties of atomic layer deposited (ALD) gallium doped zinc oxide (GZO) thin films were investigated to identify their potential as a thermoelectric material. The overall thermoelectric properties, such as the Seebeck coefficient and electrical conductivity, were probed as a function of Ga concentration in ZnO. The doping concentration was tuned by varying the ALD cycle ratio of zinc oxide and gallium oxide. The GZO was deposited at 250 °C and the doping concentration was modified from 1% to 10%. Sufficient thermoelectric properties appeared at a doping concentration of 1%. The crystallinity and electronic state, such as the effective mass, were investigated to determine the enhancement of the thermoelectric properties. The efficient Ga doping of GZO showed a Seebeck coefficient of 60 μV/K and an electrical conductivity of 1808.32 S/cm, with a maximum power factor of 0.66 mW/mK2.  相似文献   

5.
《Ceramics International》2022,48(8):10852-10861
Carbon cloth was used as a flexible substrate for bismuth telluride (Bi2Te3) particles to provide flexibility and improve the overall thermoelectric performance. Bi2Te3 on carbon cloth (Bi2Te3/CC) was synthesized via a hydrothermal reaction with various reaction times. After over 12 h, the Bi2Te3 particles showed a clear hexagonal shape and were evenly adhered to the carbon cloth. Selenium (Se) atoms were doped into the Bi2Te3 structure to improve its thermoelectric performance. The electrical conductivity increased with increasing Se-dopant content until 40% Se was added. Moreover, the maximum power factor was 1300 μW/mK2 at 473 K for the 30% Se-doped sample. The carbon cloth substrate maintained its electrical resistivity and flexibility after 2000 bending cycles. A flexible thermoelectric generator (TEG) fabricated using the five pairs of 30% Se-doped sample showed an open-circuit voltage of 17.4 mV and maximum power output of 850 nW at temperature difference ΔT = 30 K. This work offers a promising approach for providing flexibility and improving the thermoelectric performance of inorganic thermoelectric materials for wearable device applications using flexible carbon cloth substrate for low temperature range application.  相似文献   

6.
Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole (F8BT) generally has a large Seebeck coefficient, and single-walled carbon nanotubes (SWCNTs) have high electrical conductivity. In this work, we prepared F8BT/SWCNT composites to combine the good Seebeck coefficient of the polymer and the excellent electrical conductivity of SWCNTs to achieve enhanced thermoelectric properties. For the composite materials, the maximum power factor of 1 μW mK−2 was achieved when the SWCNT content was 60%, with the maximum ZT value of 4.6 × 10−4. After ferric chloride was employed as the oxidative dopant for the composites, the electrical conductivity of the composites improved significantly. The maximum value of power factor (1.7 μW mK−2) was achieved when the SWCNT content was 60%, and the ZT value of 7.1 × 10−4 was about 1.5 times as high as that of the composites with undoped F8BT. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47011.  相似文献   

7.
《Ceramics International》2023,49(15):25455-25462
Using the first-principle simulations and the Boltzmann transport equation, our study investigated the properties of single-layer SnBi2Se4 and PbBi2Se4, including stability, elasticity, electronic and thermoelectric transport properties. We discovered that both 2D materials have acceptable cleavage energies ranging from 0.27 to 0.28 J/m2 and that they are indirect semiconductors with narrow band gaps of 0.68 eV and 0.94 eV, respectively. Interestingly, the valence band maximum exhibits ‘multi-valley’ energy dispersion. Furthermore, SnBi2Se4 and PbBi2Se4 have comparable electron and hole mobility of about ∼102 cm2/Vs and ∼103 cm2/Vs, respectively resulting in high conductivity and a high thermoelectric power factor. Owing to low group velocities and strong phonon–phonon scattering rates, the materials exhibit low lattice thermal conductivities of 2.59 W/mK (SnBi2Se4) and 1.73 W/mK (PbBi2Se4). Thus, they demonstrate high thermoelectric figures of merit, namely 0.31 (SnBi2Se4) and 0.37 (PbBi2Se4) at 300 K, which rise further to 1.22 and 1.82, respectively, at 700 K. Our results suggest that these two single-layer materials are promising candidates for use in nanoelectronics and thermoelectric appliances.  相似文献   

8.
The exploration of new thermoelectric material is the current area of research in energy conversion and storage technologies, in that nanocomposite approach is a promising root to get desirable thermoelectric properties. The present study demonstrates a composite containing highly conductive titanium diboride (TiB2), polyvinyl alcohol (PVA) as binder and lead selenide (PbSe) as semiconductor. The synthesis and transport physics are studied with an intention to increase the power factor and figure of merit (ZT) of TiB2 by reducing thermal conductivity through creating inhomogeneity in microstructures. Sol gel method and carbothermal reduction reaction have been used to synthesize TiB2. More than 95% of thermal conductivity is reduced due to the phonon scattering, which is desirable to achieve a high power factor and ZT. TiB2/PVA composite possesses a very low Seebeck coefficient and exhibits three order of magnitude reduction in electrical conductivity, which hinders in achieving a good power factor and ZT. Power factor of 25.3?µW/mK2, Seebeck coefficient of 36.3 μV/K at 550?K and electrical conductivity of 2.5?×?104 S/m at ~300?K and ZT of 0.064 at 550?K are worth to report in this study. Finally, the synthesized TiB2 is incorporated into PbSe to evaluate thermoelectric properties. Maximum ZT of 0.12 at 495?K, Seebeck coefficient of ?342?µV/K at 550?K, electrical conductivity of 2.8?×?103 S/m at 400?K, thermal conductivity of 1.03?W/mK at 550?K and highest power factor of 280.2?µW/mK2 at 495?K have been achieved in this composite.  相似文献   

9.
《Ceramics International》2020,46(15):24162-24172
This work reports the pulsed laser deposition of n-type selenium (Se) doped bismuth telluride (Bi2Te2.7Se0.3) and n-type bismuth telluride (Bi2Te3) nanostructures under varying substrate temperatures. The influence of the substrate temperature during deposition on the structural, morphological and thermoelectric properties for each phase was investigated. Density functional theory (DFT) simulations were employed to study the electronic structures of the unit-cells of the compounds as well as their corresponding partial and total densities of states. Surface and structural characterization results revealed highly crystalline nanostructures with abundant grain boundaries. Systematic comparative analysis to determine the effect of Se inclusion into the Bi2Te3 matrix on the thermoelectric properties is highlighted. The dependence of the thermoelectric figure of merit (ZT) of the nanostructures on the substrate temperatures during deposition was demonstrated. The remarkable room temperature thermoelectric power factor (PF) of 2765 μW/mK2 and 3179 μW/mK2 for pure and Se-doped Bi2Te3 compounds respectively, signifies their potential of being useful in cooling and power generation purposes. The room temperature ZT values of the Se-doped Bi2Te3 was found to be 0.92, about 30% enhancement as compared with the pure phase, which evidently results from the suppressed thermal conductivity in the doped species caused by phonon scattering at the interfaces.  相似文献   

10.
The PbClxS1-x and Pb1-xBixS (x? =?0–0.05) bulks were fabricated with a facile method of hydrothermal synthesis and microwave sintering, and the effect of anionic and cationic donors on the thermoelectric performance of PbS was investigated. Although Cl? and Bi3+ both effectively improved the thermoelectric properties of n-type PbS, more excellent thermoelectric performance was obtained from Cl? doped samples because of higher electrical property and lower thermal conductivity at higher temperature (T? >?600?K). The thermoelectric figure of merit (ZT) reaches 1.04 for PbCl0.015S0.985 at 800?K and increases with temperature increasing without sign of saturation, which is probably the highest value ever reported for single-phase polycrystalline n-type PbS. The results also indicate that the hydrothermal synthesis and microwave sintering can realize anion doping as well as cation doping for n-type PbS at low cost, and PbS should be a robust alternative for PbTe thermoelectric materials.  相似文献   

11.
《Ceramics International》2023,49(8):12462-12468
The broadband spectrum detection from ultraviolet to near-infrared is hankered in the photoelectric applications of imaging, sensing and communication. Here, a new self-powered photodetector based on ferroelectric LuMnO3 thin film with a narrow bandgap of 1.46 eV exhibits high-sensitivity ultraviolet–visible–near infrared photodetection properties. The responsivity (R) and detectivity (D*) in sunlight are 0.4 A/W and 7.05 × 1011 Jones, which are much higher than that of other ferroelectric photodetectors. Moreover, under the monochromatic light (900 nm), the R and D* can reach 0.39 A/W and 6.89 × 1011 Jones. The outstanding photodetection performances owed to the large photocurrent output, where the short-circuit current density can reach 10.5 mA/cm2 under 1 sun illumination. The synergistic effect of ferroelectric photovoltaic effect and interface barrier effect demonstrates that the multi-driving forces can achieve high dissociation efficiency for photon-generated carriers. The excellent photodetection performances open up new application of ferroelectric materials in broadband self-powered photodetectors.  相似文献   

12.
《Ceramics International》2016,42(15):16644-16649
Ti-doped Sr0.9La0.1TiO3 ceramics with high density were successfully prepared in argon atmosphere by conventional solid state reaction. The influences of titanium doping content on the microstructure and thermoelectric properties were investigated. The results showed that titanium was oxidized during the calcination procedure. TiO2 phase survived and coexisted with Sr0.9La0.1TiO3 phase in the sintered ceramics. The Seebeck coefficients were increased from −163 to −259 μV/K as the temperature increased from 350 K to 1073 K. The thermal conductivity can be significantly reduced by doping Ti. Thermoelectric figure of merit (ZT) first decreased and then increased with increasing Ti doping content. Ceramics showed the best thermoelectric properties when Ti doping amount was 5 wt%, the maximum PF was 7.13 μW/K2/cm, and ZT value was 0.144 at 1073 K.  相似文献   

13.
Bismuth doped La2-xBixNiO4+δ (x = 0, 0.02 and 0.04) oxides are investigated as SOFC cathodes. The effects of Bi doping on the phase structure, thermal expansion, electrical conduction behavior as well as electrochemical performance are studied. All the samples exist as a tetragonal Ruddlesden-Popper structure. Bi-doped LBNO-0.02 and LBNO-0.04 have good chemical and thermal compatibility with LSGM electrolyte. The average TEC over 20–900°С was 13.4 × 10?6 and 14.2 × 10?6 K?1 for LBNO-0.02 and LBNO-0.04, respectively. The electrical conductivity was decreasing with the rise of Bi doping content. EIS measurement indicates Bi doping can decrease the ASR values. At 750 °C, the obtained ASR for LBNO-0.04 is 0.18 Ωcm2, which is 56% lower than that of the sample without Bi doping, suggesting Bi doping is beneficial to the electrochemical catalytic activity of LBNO cathodes.  相似文献   

14.
《Ceramics International》2022,48(7):9014-9023
Zinc oxide (ZnO) is a promising high-temperature thermoelectric material. Graphene is typically a two-dimensional material, and its development and application have attracted wide attention due to its excellent thermal stability and mechanical properties. To the best of our knowledge, the graphene-ZnO (C–ZnO) composite has never been studied in the field of thermoelectric conversion. The high-pressure and high-temperature (HPHT) technique has unique advantages in improving the thermoelectric properties of ZnO. In this study, for the first time, C–ZnO bulk energy materials with novel micro-configuration were prepared by rapid sintering using the HPHT method. Observation under a microscope revealed that as the doping amount of graphene increased, a large number of graphene nanowires formed connected between the ZnO grains, and with the excess amount of graphene introduced the morphology of the ZnO grains changed and their size became smaller. This novel micro-configuration of the 0.1C–ZnO sample showed an ultrahigh electrical conductivity of 2.8 × 104 S/m with a significantly lower lattice thermal conductivity of 4.3 Wm?1K?1 at 973 K. Ultimately, at 973 K, the zT value of the 0.1C–ZnO sample was 129 times higher than that of pure ZnO. Therefore, the high-temperature thermoelectric material C–ZnO prepared by the HPHT method can be used in automobile exhaust systems and industrial boilers to effectively recover and reuse the waste heat.  相似文献   

15.
An alternating conjugated polymer derived from 4,4,9,9-tetra(4-octyloxyphenyl)indaceno[1,2-b:5,6-b′]dithiophene and thieno[3,2-b]thiophene was synthesized by Stille coupling reaction. The copolymer shows extensive absorption from 360 nm to 590 nm with optical band gap of 2.12 eV. The highest occupied molecular orbit (HOMO) and the lowest unoccupied molecular orbit (LUMO) energy levels of the copolymer, determined by cyclic voltammetry (CV), are about ?5.29 eV and ?3.01 eV, respectively. A field-effect hole mobility of 8.1 × 10?4 cm2/(V s) and an on/off ratio of 2.0 × 103 are obtained in the field-effect transistors based on the copolymer. The Jsc, Voc and FF of the polymer photovoltaic cells (PVCs) based on the copolymer were enhanced simultaneously via the inserting of alcohol soluble conjugated polymer interlayer between active layer and metal cathode, and the maximal power conversion efficiency of 4.19% was achieved in the modified devices under an AM 1.5 simulator (100 mWcm?2).  相似文献   

16.
In this work, V-doped and (Sm, V) co-doped ZnO samples have been synthesized using ball milling method followed by heat treatment. The dependence of structural, optical, electrical and dielectric properties of V:ZnO samples on the Sm doping concentration has been explored. The structural properties have been studied by means of X-ray diffraction (XRD) and Rietveld refinement. Oxidation states of the elements present in the samples are determined using X-ray photoelectron spectroscopy. Raman spectra of the samples further verified the observations obtained from XRD. The crystallite size and microstrain have been estimated from the Williamson-Hall analysis. Microstrain increases from 0.814 × 10?3 to 1.01 × 10?3 with increase in the Sm doping level. The morphology of the grains is significantly affected by the Sm doping. The enhancement of defect density with Sm doping is responsible for the observed red shift (3.29–3.19 eV) in the band gap. The frequency dependence of the dielectric properties has been studied at various fixed temperatures ranging from 25 to 350 °C. The increase in real dielectric constant with dopant content indicates the enhancement of energy storage capacity. The ac conductivity follows Jonscher's power law and it increases up to 1 mol% Sm concentration. Further increase in Sm extent leads to the decrease in ac conductivity. The impedance spectroscopy has been performed to understand electrical behavior of samples and Cole-Cole plots are fitted against the equivalent circuit model. The electrical activation energy values for conduction and relaxation vary in the range: 0.281–0.269 eV and 0.260–0.243 eV, respectively.  相似文献   

17.
《Ceramics International》2023,49(7):10360-10364
Tin dioxide (SnO2) has recently proved to be a promising material for thermoelectric applications. We have investigated the influence of highly valence Bi doping as an electron donor in oxygenated SnO2 materials on their thermoelectric properties. We have synthesized the pure and Bi doped SnO2 nanoparticles (x = 0%, 5%, 10%, and 15%) through a simple hydrothermal approach. The Seebeck coefficient and Hall measurements have been used to determine thermoelectric behaviour. The measured value of the Seebeck coefficient increases from - 56 to - 83 μV/°C as the Bi content increases. This improvement in the Seebeck coefficient has been attributed to the charge carrier localization (energy filtering effect) caused by the inclusion of the bismuth atoms and the presence of secondary phases based on BiO2. However, the electrical conductivity measurements show an inverse relation with the Bi doping, increasing the impurities. The Sn1-xBixO2 sample with x = 15 has achieved the maximum Seebeck value, resulting in the upward trend in power factor of up to 1.97 × 10?4 Wm?1C?2. Further, we have used X-ray diffraction and scanning electron microscopy to determine the effect of Bi on the SnO2 crystal structure and surface morphology. Which also demonstrates the presence of composites with mixed phases.  相似文献   

18.
《Ceramics International》2020,46(13):21378-21387
A systematic density functional theory investigation of Cs2PbX6 (X = Cl, Br, I) double perovskites is presented. The lattice constants are computed after structure optimization and using Birch-Murnaghan equations, which agree to the experimental literature. The mechanical stability conditions satisfy Born criteria, and the ductile nature is evidenced by the calculated Poisson's (v) and Pugh's ratios (B0/G) because all three double perovskites exhibit values higher than the respective critical values v = 0.26 and B0/G = 1.75. A detailed study of the optoelectronic properties reveals these double perovskites as promising candidates for future optical devices due to their direct band gaps (within 0.45–2.54 eV) and large absorption coefficients 5.95 × 105 cm−1, which are suitable for solar cell applications. ZT calculations demonstrate minute variations within 200–800 K and computed parameter values are quite favorable for thermoelectric applications of these materials in the future. A p-type semiconducting nature is predicted by the computed thermoelectric properties. Additionally, computed refractive indices show Cs2PbBr6 and Cs2PbI6 exhibiting super-luminescent properties in the UV range. Therefore, the studied double perovskites provide further interest for future energy conversion and photonic based technologies.  相似文献   

19.
The effect of Er3+ doping on the structure and thermoelectric transport properties of CdO ceramics was investigated. The solubility limit of Er3+ in CdO was very small and that additions of more than about 0.5 at% Er3+ resulted in the presence of Er2O3. With the addition of Er3+, the average grain size of Cd1?xErxO (0  x  0.015) decreased and the carrier concentration as well as mobility increased at room temperature. A small amount of Er3+ doping resulted in a marked increase of electric conductivity and a moderate decrease of Seebeck coefficient. Although Er3+ doping also leaded to an increase in thermal conductivity, a large ZT of 0.2 was achieved in x = 0.005 sample at 723 K due to the obvious improvement of power factor. The results demonstrate that CdO:Er is a new promising n-type thermoelectric material.  相似文献   

20.
《Ceramics International》2022,48(14):19618-19625
A series of Bi0.97?xNa0.03MgxCuSeO (0 ≤ x ≤ 0.12) was fabricated by a two?step solid?state reaction and spark plasma sintering (SPS), and the influence of Mg2+ doping on the thermoelectric properties of Bi0.97Na0.03CuSeO was systematically investigated. The SPS processed?Bi0.97?xNa0.03MgxCuSeO had a ZrSiCuAs?type tetragonal crystal structure (space group P4/nmm). The Mg2+ doping appreciably enhanced the electrical conductivity due to the increase in hole concentration. Furthermore, the Mg2+ doping increased the grain boundary areas and bulk porosity and induced the strain field and mass fluctuations, thereby reducing the phonon thermal conductivity. We significantly improved the thermoelectric performance of Bi0.97?xNa0.03MgxCuSeO (0 ≤ x ≤ 0.12) by enhancing the thermoelectric power factor and by reducing the thermal conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号