首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Bismuth‐, lanthanum‐, and molybdenum‐doped calcium manganite (CaMnO3, abbreviated Mn113) are synthesized by solid‐state synthesis route from their respective oxide precursors at a same doping level (x=0.05). Depending on the ionic sizes, trivalent dopants (Bi3+ and La3+) replace Ca2+(A site), while penta/hexavalent dopant Mo5+/Mo6+ replaces Mn4+ (B site) in the Mn113 structure. XRD of all three doped samples confirm formation of single phase. In all three samples, doping causes unit cell volume to expand, while volume expansion is maximum for the Mo‐Mn113. The transport behavior of the doped samples follows small polaron hopping mechanism. Resistivity of the doped samples depends not only on the carrier concentration but also on the effective bandwidth determined by the structural distortion introduced by the dopant ions. Bi‐Mn113 has highest resistivity at the both temperature end, while La‐Mn113 has the lowest. Thermopower is determined by the carrier concentration only and does not depend on dopant type, having value ~260 μV/K at 1000 K. At high (>800 K), S reaches a saturation value and becomes independent of T. La‐Mn113 is having highest figure of merit (zT) 0.19 at 1000 K.  相似文献   

2.
《Ceramics International》2022,48(8):11199-11208
An array of titanium (Ti) doped HfO2 [(Hf1-xTixO2) (x = 0.0–1.0)] nanoparticles (NPs) synthesis and the study of their structural, spectroscopic, and dielectric properties is reported. The Hf1-xTixO2 NPs were synthesized by a sol-gel type wet chemical process. The crystal structure of pure HfO2 and TiO2 NPs revealed by structural analysis is monoclinic (m) and tetragonal (t), respectively. The crystallinity of the doped samples was found to be dopant concentration-dependent. The microstructure of the obtained NPs was investigated along with their spectroscopic and dielectric characteristics. The tunable dielectric properties of Hf1-xTixO2 NPs make them ideal for high frequency, high-k applications.  相似文献   

3.
《Ceramics International》2022,48(22):32703-32711
Ag1-x-3yLixSmyNbO3 (x≤0.05, y≤0.05) (ALSN) antiferroelectric ceramics were successfully prepared via conventional solid-state reaction and sinter routes in oxygen atmosphere for improving the energy storage characteristic of pure AgNbO3. The results indicate that all of the studied compositions display a pure orthorhombic antiferroelectric (AFE) perovskite structure, while their key parameters of electric-field-induced antiferroelectric-ferroelectric transition can be affected by Li+ or/and Sm3+ doping contents. The Sm3+ doping can enhance the stability of antiferroelectric state, giving rise to higher antiferroelectric-ferroelectric transition electric-field (EF and EB), while Li+ doping can reduce EF and EB for Sm3+ doped AgNbO3 with low Sm3+ content (y≤0.03). When co-doping the same amounts of Li+ and Sm3+ at x=y≤0.03, both EF and EB almost remain unchanged. At x=y=0.05, the diffuse phase transition (DPT) behavior of antiferroelectric-paraelectric (AFE-PE) phase transition occurred, resulting in a “slim-like” double-polarization hysteresis with significantly enhanced EF. Due to these features, both Wrec and η are improved compared with pure AgNbO3. The Wrec and η with composition at x=y=0.05 is 2.33 J/cm3 and 58% under applying electric field of 240 kV/cm, respectively. The results suggest that building DPT behavior of AFE-PE phase transition could be an alternative strategy to improve the energy storage characteristic of AgNbO3.  相似文献   

4.
Different doping elements have been used to reduce the dielectric losses of CaCu3Ti4O12 ceramics, but their dielectric constants usually are undesirably decreased. This work intends to reduce their dielectric losses and simultaneously enhance their dielectric constants by co-doping Y3+ as a donor at A site and Al3+ as an acceptor at B site for substituting Ca2+ and Ti4+, respectively. Samples with different doping concentrations x = 0, 0.01, 0.02, 0.03, 0.05 and 0.07 have been prepared. It has been shown that their dielectric losses are generally reduced and their dielectric constants are simultaneously enhanced across the frequency range up to 1 MHz. The doped sample with x = 0.05 exhibits the highest dielectric constant, which is well over 104 for frequency up to 1 MHz and is about 20% higher than the undoped sample. Impedance spectra indicate that the doped samples have much higher grain boundary resistance than the undoped one.  相似文献   

5.
《Ceramics International》2022,48(10):14246-14260
Ferrites are among the most frequently investigated materials mainly due to interesting and practically different properties. Therefore, easily and cost-effective lanthanum doped Mg0.5Cd0.25Cu0.25Fe2-xLaxO4 (x = 0.0, 0.0125, 0.025, 0.0375 and 0.05) ferrites were synthesized by a co-precipitation route, a comprehensive characterisation of their structural, optical, electric, dielectric, molecular vibrational, and magnetic properties were carried out. X-ray diffraction analysis confirmed the formation of a cubic spinel structure. Variations in frequency bands were also observed with amplification in optical band gap energy (2.95 – 3.38 eV) due to La3+ ions insertion. The electric resistivity had opposite trends at low and high temperatures with increasing La3+ content. The Curie temperature, activation energy, and drift mobility were also determined to have values consistent with the semiconducting behavior of the soft ferrites. The saturation magnetization (MS) has a maximum value 49.385 emu/g with remanent magnetization (Mr) was 34.928 emu/g and coercivity 661.4 Oe for La3+ concentration x = 0.05. The minimum dielectric loss was observed for La3+ concentration x = 0.025. Moreover, the resistivity (ρ) has a maximum value of 7.95 × 104 Ω cm for La3+ concentration x = 0.025. The calculated frequency range of La3+ doped Mg–Cd–Cu ferrites was detected in the microwave range (3.36 – 10.80 GHz), suggesting the potential application of the materials in longitudinal recording media and microwave absorbance.  相似文献   

6.
《Ceramics International》2022,48(20):29977-29981
Er3+ single doped fluoroaluminate-tellurite glasses were made by employing a conventional melt-quenching technique. A strong fluorescence around 3.1 μm was achieved from Er3+-doped fluoride glasses, under a 980 nm laser diode pump, which was assigned to the Er3+: 4S3/2 → 4F9/2 radiation transition process. The up-conversion and mid-infrared spectra of emission for fluoroaluminate-tellurite glasses with various concentrations of Er3+ ions dopant was researched. In addition, the calculated fluorescence lifetime value about 3.1 μm reaches 0.48 ms. The findings indicate that fluoroaluminate-tellurite glasses doped with Er3+ have prospects of being developed into 3.1 μm mid-infrared fiber and laser materials.  相似文献   

7.
The semiconductors based on simple oxide have unique features with controllable electrical property by element doping. Y3+ doped NiO (Ni1−xYxO,  0.01) and Mg2+ substituted Ni0.995Y0.005O (Ni0.995−yY0.005MgyO,  0.5) powders were synthesized by a wet chemical method. The related ceramics were obtained by conventional ceramic processing. Phase component, microstructure, electrical property and temperature sensitivity of the prepared ceramics were investigated. All ceramics have a rock-salt type crystalline structure. The room-temperature resistivity of the ceramics can be widely adjusted from 254 to 12 322 Ω·cm by changing the concentrations of Y3+ and Mg2+ ions. The samples show typical characteristics of negative temperature coefficient of resistivity and have high temperature sensitivity with material constants higher than 4745 K. The analysis of impedance spectra indicates that the electrical properties resulted from both grain effect and grain boundary effect. Both band conduction and small polaron hopping were proposed as possible conduction mechanisms in the studied ceramics.  相似文献   

8.
We report on a new approach to the synthesis of Eu3+ doped TiO2 nanocrystals and prolate nanospheroids. They were synthesized by shape transformation of hydrothermally treated titania nanotubes at different pH and in the presence of Eu3+ ions. The use of nanotubes as a precursor to the synthesis of Eu3+ doped TiO2 nanocrystals and prolate nanospheroids opens the possibility of overcoming the problems related to molecular precursors. The shapes and sizes of the nanotubes, Eu3+ doped TiO2 nanocrystals and prolate nanospheroids were characterized by transmission electron microscopy (TEM) technique. Crystal structures of the resultant powders were investigated by X-ray diffraction (XRD) analysis. The percentage ratio of Eu3+ to Ti4+ ions in doped nanocrystals was determined using inductively coupled plasma atomic emission spectroscopy. The optical characterization was done by using fluorescence and ultraviolet-visible reflection spectroscopies. An average size of faceted Eu3+ doped TiO2 nanocrystals was 13 nm. The lateral dimensions of Eu3+ doped TiO2 prolate nanospheroids varied from 14 to 20 nm, while the length varied from 40 to 80 nm, depending on precursor concentrations. The XRD patterns revealed the homogeneous anatase crystal phase of Eu3+ doped TiO2 nanocrystals and prolate nanospheroids independently of the amount of dopant. A postsynthetic treatment (filtration or dialysis) was applied on the dispersions of the doped nanoparticles in order to study the influence of the dopant position on photoluminescence (PL) spectra. In the red spectral region, room temperature PL signals associated with 5D0  7FJ (J = 1–4) transitions of Eu3+ were observed in all samples. The increased contribution of dopants from the interior region of dialyzed nanocrystals to photoluminescence was confirmed by the increase of R value.  相似文献   

9.
《Ceramics International》2022,48(22):33563-33570
Lanthanum hafnate (La2Hf2O7) with a pyrochlore structure has excellent high temperature stability and low thermal conductivity, which is promising for thermal/environmental barrier coatings (T/EBCs) applications. To reduce its thermal expansion coefficient (TEC) so as to better match SiCf/SiC composites, a smaller tetravalent dopant Ti4+ has been introduced in the Hf-sites to form La2(Hf1-xTix)2O7 (x ≤ 0.20). The phase composition and microstructure confirms that La2(Hf1-xTix)2O7 solid solutions possess a pure pyrochlore structure. With an increase of x, their TECs are decreasing consistently, whilst their thermal conductivities of La2(Hf1-xTix)2O7 are slightly increasing at high temperature but still much lower than those of meta-stable yttria partially stabilized zirconia, both of which are attributing to an increase of elastic modulus after Ti4+ doping on Hf-sites. The extremely excellent high temperature stability, relatively low thermal conductivities and low TECs suggest that La2(Hf1-xTix)2O7 is a prospective candidate material for T/EBC applications.  相似文献   

10.
Environmentally benign lead-free bulk ceramics with high recoverable energy density (Wrec) are very attractive in advanced pulsed power capacitors. In this work, composition engineering was adopted by La3+ modification to improve the energy storage performance of Ag1−3xLaxNbO3 ceramics. It was found that the antiferroelectric (AFE) phase was stabilized after La3+ substitution, as a result of the reduced tolerance factor t. Significant improvement of Wrec and energy storage efficiency (η) were achieved with value of 3.12 J/cm3 and 0.63 for = 0.02 at an electric field of 230 kV/cm, more than 1.5 times the value of pure AgNbO3 (Wrec = 1.9 J/cm3, η = 0.40). The excellent energy storage properties are resulted from the increased antiferroelectric-ferroelectric phase transition electric field (EF), ferroelectric-antiferroelectric phase transition electric field (EA), and breakdown electric field (Eb). The enhanced Eb was ascribed to the decreased grain size and increased electrical resistivity upon La3+ modification. The feature makes Ag1−3xLaxNbO3 a potential candidate for energy storage applications.  相似文献   

11.
AgNbO3 as a lead-free antiferroelectric material, has received widespread attention in recent years due to its promising application in the aspects of energy storage devices. However, the high remnant polarization and low breakdown strength limits its energy storage properties. In this work, Nd3+-doped AgNbO3 (Ag1−3xNdxNbO3, x=0−0.015) ceramics were prepared and a two-step sintering method was employed. The introduction of Nd3+ leads to the enhanced stability of the antiferroelectric phase, refined grain size and increased resistivity. Furthermore, by adjusting the pre-heating temperature in the two-step sintering, the homogeneity of microstructure is improved and the resistance of pre-heated samples increases by one order of magnitude compared with normally sintered samples, leading to the enhanced breakdown strength. Ag0.97Nd0.01NbO3 pre-heated at 1100 °C for 2 h exhibits promising energy storage properties, with a recoverable energy storage density of 3.2 J/cm3 and energy efficiency of 52 % under an applied electric field of 210 kV/cm.  相似文献   

12.
We report on successful preparation of Er3+ doped transparent alumina (0.1–0.17 at.%) exhibiting visible light photoluminescence using wet shaping method and hot isostatic pressing. The effects of dopant amount, type of doping powder and powder pre-treatment on final microstructure, real in-line transmittance and photoluminescence characteristics were studied.The real in-line transmittance ranged between 28 and 56%, depending on processing parameters. The transparency decreased with increased amount of dopant. The decrease is dependent on the type of doping powder and its pre-treatment.The photoluminescence spectra measured in both visible and NIR region showed typical emission bands due to the presence of Er3+ ions. The decay profiles of the 4S3/2  4I15/2 transition were fitted with a 2-exponential function, with faster component in the range of 360–700 ns and slower component around 1.6-2.4 μs. The intensity of emissions and lifetime of the 4S3/2 level decrease significantly with increasing concentration of Er3+ ions.  相似文献   

13.
Rare-earth (RE) hafnates are promising thermal and environmental barrier coating (TEBC) materials for SiCf/SiC ceramic matrix composites. In this study, pure-phase and dense δ-RE4Hf3O12 (RE = Yb, Lu) bulk ceramics have been fabricated via a hot-pressing method. The crystal structure, microstructure, mechanical, and thermal properties of δ-RE4Hf3O12 were systematically investigated in order to probe their potential application as TEBCs. The high-temperature elastic moduli of δ-Yb4Hf3O12 and δ-Lu4Hf3O12 are measured to be 185 and 188 GPa at 1673 K, respectively, which are over 85% values of room temperature. The coefficients of thermal expansion are 7.64 × 10−6 and 7.46 × 10−6 K−1 for δ-Yb4Hf3O12 and δ-Lu4Hf3O12, respectively. The relatively low coefficient of thermal expansion and thermal conductivity as well as their excellent high-temperature stability endow these hafnates as potential TEBC candidates.  相似文献   

14.
《Ceramics International》2022,48(8):11304-11312
Li13.9Sr0.1Zn(GeO4+δ)4 (LSZG) materials can exhibit proton conduction by Li+/H+ ion exchange in hydrogen atmosphere. It can be used in solid oxide fuel cells (SOFCs) as an electrolyte. In this study, In3+ doped LSZG powders are synthesized by sol-gel method. X-ray diffraction, scanning electron microscopy, thermal gravimetric analyzer, and electrochemical impedance spectroscopy are used to investigate the effects of In doping on LSZG. All Li13.9-xInxSr0.1Zn(GeO4+δ)4 (LISZG, 0 ≤ x ≤ 0.3) ceramics exhibit the same phase with LSZG. The dopant of In promotes the sintering activity and Li+/H+ ion exchange rate of LSZG. The optimum doping of In is x = 0.2. At 600 °C, Li13.7In0.2Sr0.1Zn(GeO4+δ)4 (0.2LISZG) shows a proton conductivity of 0.094 S/cm under 0.9 V direct current bias voltage. In addition, the single cell based on 0.2LISZG electrolyte is prepared, and it has been demonstrated that the practical utilization of 0.2LISZG in IT-SOFCs is feasible.  相似文献   

15.
The effects of the co-doping and the resultant co-segregation of 2 mol% TiO2 and 2 mol% GeO2 on the ionic conductivity and on the chemical bonding state in a tetragonal ZrO2 polycrystal were investigated. The conductivity data and grain boundary microstructure showed that the doped Ti4+ and Ge4+ cations segregate along the grain boundary, and this segregation causes a reduction in the conductivity of both the grain interior and grain boundary and an increase in the activation energy of the grain boundary conductivity. Overall, the data indicate that the segregation retards the diffusion of oxygen anions. A first-principle molecular orbital calculation explains the retarded diffusion of the oxygen anion from a change in the covalent bonds around the dopant cations; an increase in the strength of the covalent bond between the oxygen and doped cation should work to suppress the diffusion of the oxygen anion.  相似文献   

16.

Abstract  

A series of Zn2+ and W6+ doped tin oxide (SnO2) thin films with various dopant concentrations were prepared by spray pyrolysis deposition, and were characterized by X-ray diffraction, atomic force microscopy, contact angle, absorbance, current density–voltage (J–V) and photocurrent measurements. The results showed that W6+ doping can prevent the growth of nanosized SnO2 crystallites. When Zn2+ ions were used, the crystallite sizes were proved to be similar with the undoped sample due to the similar ionic radius between Zn2+ and Sn4+. Regardless of the dopant ions’ type or concentration, the surface energy has a predominant dispersive component. By using Zn2+ dopant ions it is possible to decrease the band gap value (3.35 eV) and to increase the electrical conductivity. Photocatalytic experiments with methylene blue demonstrated that with zinc doped SnO2 films photodegradation efficiencies close to 30% can be reached.  相似文献   

17.

Abstract  

Nanosized CexM1−xO2−δ (M = Zr, Hf, Tb and Pr) solid solutions were prepared by a modified coprecipitation method and thermally treated at different temperatures from 773 to 1073 K in order to ascertain the thermal behavior. The structural and textural properties of the synthesized samples were investigated by means of X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), BET surface area, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy (RS) techniques. The catalytic efficiency has been performed towards oxygen storage/release capacity (OSC) and CO oxidation activity. The characterization results indicated that the obtained solid solutions exhibit defective cubic fluorite structure. The solid solutions of ceria–hafnia, ceria–terbia and ceria–praseodymium exhibited good thermal stability up to 1073 K. A new Ce0.6Zr0.4O2 phase along with Ce0.75Zr0.25O2 was observed in the case of ceria–zirconia solid solution due to more Zr4+ incorporation in the ceria lattice at higher calcination temperatures. The reducibility of ceria has been increased upon doping with Zr4+, Hf4+, Tb3+/4+ and Pr3+/4+ cations. This enhancement is more in case of Hf4+ doped ceria. Among various solid solutions investigated, the ceria–hafnia combination exhibited better OSC and CO oxidation activity. The high efficiency of Ce–Hf solid solution was correlated with its superior bulk oxygen mobility and other physicochemical characteristics.  相似文献   

18.
Nanoparticles of Co0.5Zn0.5AlxFe2?xO4 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) were synthesized by sol–gel method and the influence of Al3+ doping on the properties of Co0.5Zn0.5Fe2O4 was studied. X-ray diffraction studies revealed the formation of single phase spinel type cubical structure having space group Fd-3m. A decreasing trend of the lattice parameter was observed with increasing Al3+ concentration due to the smaller ionic radii of Al3+ ion as compared to Fe3+ ion. TEM was used to characterize the microstructure of the samples and particle size determination, which exhibited the formation of spherical nanoparticles. The particle size was found to be increases up to ~45 nm after annealing the sample at 1000 °C. Electrical resistivity was found to increase with Al3+ doping, attributed to the decrease in the number of Fe2+–Fe3+ hopping. The activation energy decreased with increasing Al3+ ion concentration, indicating the blocking of conduction mechanism between Fe3+–Fe2+ ions. The value of saturation magnetization decreased, when Fe3+ ions were doped with Al3+ ions in Co0.5Zn0.5Fe2O4; however, the coercivity values increased with increasing Al3+ ion content.  相似文献   

19.
《Ceramics International》2023,49(20):33156-33167
Improving energy storage density and efficiency of antiferroelectric materials could promote their use within energy storage field, particularly in the context of pulsed power sources. In this study, Sm and Hf co-doped silver niobate (AgNbO3; AN) ceramics were prepared using traditional solid-state method. Comprehensive analysis of crystal structure, microstructure, defects, absorbance, and energy storage performance of the material was conducted. Results reveal that co-doping increased the concentration of cation vacancies and band gap, decreased the M1–M2 and M2–M3 phase transition temperatures, and enhanced the antiferroelectric phase stability and energy storage performance. The (Ag0.955Sm0.015)(Nb0.95Hf0.05)O3 ceramic exhibited energy storage density of 5.35 J/cm3 and energy storage efficiency of 73% at electric field (E) of 295 kV/cm, demonstrating significant improvement. The (Ag0.955Sm0.015)(Nb0.95Hf0.05)O3 ceramic exhibited excellent thermal stability (<5% in the range of 25 °C-125 °C) and frequency stability (<3% in the range of 1–100 Hz under E = 290 kV/cm). Additionally, the (Ag0.955Sm0.015)(Nb0.95Hf0.05)O3 ceramic exhibited ultrahigh discharge speed (∼18 μs) and high discharge energy density (4.9 J/cm3). These advantages make these ceramics promising materials for energy storage applications.  相似文献   

20.
《Ceramics International》2022,48(21):31755-31762
A family of doped-NASICON-type structures according to the chemical compositions: Li1.2 Zr1.9M0.1(PO4)3 [with M = Ca2+, Mg2+, Zn2+]; Li1.1 Zr1.9Y0.1(PO4)3 and Li1.0 Zr1.9Ce0.1(PO4)3 have been synthesized by solid state reaction. The modification on the thermal treatment proposed in this work makes possible to obtain a high purity phase confirmed by XRD, SEM, microRaman-confocal and FTIR. Rietveld refinement evidences how the LZP lattice parameters are affected by each of those five different dopant cations incorporated into the pristine structure. Impedance spectroscopy proves how the relationship radius - charge of each dopant-ion affects the ionic conductivity. Unravelling that the partial replacement of Zr4+ in the LZP by a dopant improves the conductivity behavior. When the dopant cation has a lower charge and a larger size than the Zr4+ the developed structure favours the lithium-ion mobility at room temperature and the lithium conductivity increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号