首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nematophagous fungi Arthrobotrys oligospora and Myzocytiopsis glutinospora increase to large numbers (>103 propagules/g of soil) when moth larvae killed by entomopathogenic nematodes are added to soil microcosms. In spite of these increases, it is unclear how effective these nematophagous fungi are in suppressing nematodes. We measured nematode mortality in microcosms with small numbers of assay nematodes, and we examined assay nematodes recovered at the end of the experiment for signs of fungal parasites. Because the microcosms did not have a moat or other refuge, the assay nematodes remained vulnerable for the 3 days that they were in the soil. Mortality in this experiment was not substantially increased compared to a previous experiment, which measured the mortality of a larger number of assay nematodes in microcosms surrounded by a moat. Mortality, however, increased from 34 to 50% when recovered assay nematodes were examined and when those with conidia of the nematophagous fungus Hirsutella rhossiliensis were considered dead. The zoosporic fungus M. glutinospora was not detected, perhaps because the soil water potential was too low. Contrary to our expectations, there was no evidence of negative feedback on nematodes (i.e., no evidence of density-dependent mortality) because the addition of dead moth larvae greatly increased numbers of resident nematodes and A. oligospora but did not greatly affect the probability of nematode mortality.  相似文献   

2.
Researchers have proposed that Arthrobotrys oligospora and related fungi trap soil nematodes to obtain nitrogen and thereby compete saprophytically for carbon and energy in nitrogen-poor environments, including litter and wood. The current study tested two hypotheses concerning this model. The first was that wood decomposition would be enhanced if both large numbers of nematodes (a potential nitrogen supply) and A. oligospora (a cellulolytic organism that can use that N supply) were present. The second was that A. oligospora trapping activity would increase if large numbers of nematodes were added to soil containing abundant carbon (a wood dowel or chip). Although the first hypothesis was supported by an in vitro experiment on agar (A. oligospora degraded much more wood when nematodes were present), neither hypothesis was supported by an experiment in vials containing field soil. In soil, wood decomposition was unaffected by the addition of A. oligospora or large numbers of nematodes. Whereas A. oligospora trapped virtually all nematodes added to agar cultures, it trapped few or no nematodes added to soil. Given that the fungal isolate was obtained from the same soil and that the fungus increased to large numbers (>1×103 propagules g−1 soil), the failure of A. oligospora to trap nematodes in soil is difficult to explain. Soil nitrate levels, however, were high (71 mg kg−1), and it is possible that with lower nitrate levels, trapping in soil might be stimulated by wood and nematodes.  相似文献   

3.
Of the 13 nematode-trapping fungi previously detected at the Bodega Marine Reserve (BMR, Sonoma County, CA, USA), Arthrobotrys oligospora is by far the most abundant. Why A. oligospora is so abundant is unclear, but the answer may involve bush lupines (Lupinus arboreus), ghost moth larvae (Hepialus californicus), and insect-parasitic nematodes (Heterorhabditis marelatus). Previous research documented a dramatic increase of A. oligospora in BMR soil with the addition of an H. marelatus-parasitized moth larva. The current study tested two predictions based on the hypothesis that the H. marelatus-parasitized ghost moth larva is a unique and important resource for A. oligospora at BMR. First, because ghost moth larvae are concentrated in soil under bush lupines, we predicted that A. oligospora numbers would be greater under lupines than away from lupines. Second, we predicted that A. oligospora would be enhanced more by moth larvae containing living H. marelatus than by moth larvae containing dead H. marelatus or no H. marelatus or by nematodes alone. The first prediction was supported by data from a field study (A. oligospora population density was greater beneath lupines than in grasses 2 m away), but the difference was small. The second prediction was not supported by data from a laboratory experiment (dead moth larvae caused dramatic increases in A. oligospora numbers whether or not the dead moth larvae contained living nematodes). While H. marelatus are clearly unnecessary for the large increase in A. oligospora numbers, the importance of nematodes in general remains unclear because addition of dead moth larvae always resulted in large increases in bacterivorous nematodes and because addition of nematodes alone enhanced A. oligospora in one trial but not in two others.  相似文献   

4.
The nematophagous fungus Arthrobotrys oligospora was tested in vitro and in vivo for its ability to solubilize rock phosphate. Three types of rock phosphate (RP) from Burkina Faso (KRP), Senegal (TRP), and Mali (TIRP) were used at four concentrations for the in‐vitro experiment. All three types of RP were solubilized by the fungus. The maximum quantity of P recovered in solution was obtained with TRP, 12.5% for an application of 1 g L–1. The effect of TRP and A. oligospora applied separately or in combination was tested in vivo on the growth of A. holosericea. In a P‐deficient soil without addition of RP, P solubilization was increased by addition of A. oligospora. The P uptake by plants growing in soil amended with TRP and inoculated with A. oligospora was significantly higher compared to noninoculated controls, thus demonstrating the ability of the fungus to solubilize additional phosphate from RP in vivo.  相似文献   

5.
A microcosm experiment was carried out to quantify the effects of organisms at various trophic levels on C and N mineralization after the addition of crop residues to arable soil. The effects of the bacterivorous nematodes Rhabditis sp. and Acrobeloides bütschlii and of the nematophagous fungi Arthrobotrys oligospora und Drechmeria coniospora on soil respiration and N mineralization were measured over 6 months at 20°C. In the presence of nematodes, C mineralization was increased during the first month and subsequently reduced; N mineralization was increased during the first 2 months and then reduced. The results support the assumption that nematodes influence C mineralization mainly indirectly by affecting bacterial activity, and N mineralization mainly directly by mineralizing bacterial biomass. A. oligospora contributed directly to C mineralization. The effect of both fungi on N mineralization was indirect and resulted from the reduction in the numbers of nematodes. The results showed that the effects of nematodes and nematophagous fungi and the mechanisms behind the effects may vary strongly in time, and are correlated with the type of organic matter decomposed.Work was carried out at the DLO Research Institute for Agrobiology and Soil Fertility, Haren  相似文献   

6.
The heterogeneity of nutrients in forest soils is governed by many biotic and abiotic factors. The significance of nutrient patchiness in determining soil processes remains poorly understood. Some saprotrophic basidiomycete fungi influence nutrient heterogeneity by forming large mycelial networks that enable translocation of nutrients between colonized patches of dead organic matter. The effect of mycophagous soil fauna on these networks and subsequent nutrient redistribution has, however, been little studied. We used a soil microcosm system to investigate the potential effects of a mycophagous collembola, Protaphorura armata, on nutrient transfer within, and nutrient loss from, the mycelium of a saprotrophic basidiomycete fungus, Phanerochaete velutina. A 15N label, added to central mycelium, was used to track nitrogen movement within the microcosms across 32 days. Although collembola grazing had little impact on δ15N values, it did alter the partitioning of 15N between different regions of mycelia. Less 15N was transferred to new mycelial growth in grazed systems than in ungrazed systems, presumably because collembola reduced fungal growth rate and altered mycelial morphology. Surprisingly, collembola grazing did not increase the mineralization of N from mycelium into the bulk soil. Overall, our results suggest that mycophagous soil fauna can alter nutrient flux and partitioning within fungal mycelium; this has the potential to affect the dynamics and spatial heterogeneity of forest floor nutrients.  相似文献   

7.
为比较入侵植物与本地植物对土壤微生态影响的差异, 探索外来植物入侵的土壤微生物学机制, 本研究通过同质园试验, 比较分析了2种入侵菊科植物(紫茎泽兰、黄顶菊)和2种本地植物(马唐、猪毛菜)对土壤肥力和微生物群落的影响, 并通过盆栽反馈试验验证入侵植物改变后的土壤微生物对本地植物旱稻生长的反馈作用。同质园试验结果表明: 2种入侵植物和2种本地植物分别对土壤微生态产生了不同的影响, 尤其是紫茎泽兰显著提高了土壤有效氮、有效磷和有效钾含量,紫茎泽兰根际土壤中有效氮含量为39.80 mg·kg-1,有效磷含量为48.52 mg·kg-1。磷脂脂肪酸指纹图谱结果表明, 2种入侵植物与2种本地植物相比, 较显著增加了土壤中放线菌数量, 而紫茎泽兰比其他3种植物显著增加了细菌和真菌数量。盆栽结果表明: 黄顶菊生长过的土壤灭菌后比灭菌前旱稻株高增加113%, 紫茎泽兰也使旱稻的株高增加17%。由以上结果可知, 紫茎泽兰和黄顶菊可能通过改变入侵地土壤的微环境, 形成利于其自身生长扩散的微生态环境从而实现其成功入侵。  相似文献   

8.
The soils of the Bodega Marine Reserve (BMR, Sonoma County, California) contain many nematode-trapping fungi and many ghost moth larvae parasitized by entomopathogenic nematodes. The current study determined whether these nematode-parasitized moth larvae, which can produce very large numbers of nematodes, enhanced the population densities of nematode-trapping fungi and whether the fungi trapped substantial numbers of nematodes emerging and dispersing from moths. Wax moths were used in place of ghost moths because the former are easier to obtain. When nematode-parasitized moth larvae were added to laboratory microcosms containing BMR field soil, the population densities of four nematode-trapping fungi increased substantially. The greatest increase in population density was by Arthrobotrys oligospora, which uses adhesive networks to capture nematodes. A. oligospora population density increased about 10 times when the added moth larvae were parasitized by the nematode Heterorhabditis marelatus and about 100 times when added moth larvae were parasitized by the nematode Steinernema glaseri. Other trapping fungi endemic to the soil and enhanced by nematode-parasitized moth larvae included Myzocytium glutinosporum, Drechslerella brochopaga, and Gamsylella gephyropaga, which produce adhesive spores, constricting rings, and adhesive branches, respectively. The data suggest that the previously documented abundance and diversity of nematode-trapping fungi in BMR soil can be explained, at least in part, by nematode-parasitized insects, although that inference requires further studies with ghost moths. The strong bottom-up enhancement of nematode-trapping fungi was not matched by a strong top-down suppression of nematodes, i.e. the fungi trapped fewer than 30% of dispersing nematodes.  相似文献   

9.
Plants can mediate interactions between aboveground herbivores and belowground decomposers as both groups depend on plant-provided organic carbon. Most vascular plants also form symbiosis with arbuscular mycorrhizal fungi (AMF), which compete for plant carbon too. Our aim was to reveal how defoliation (trimming of plant leaves twice to 6 cm above the soil surface) and mycorrhizal infection (inoculation of the fungus Glomus claroideum BEG31), in nutrient poor and fertilized conditions, affect plant growth and resource allocation. We also tested how these effects can influence the abundance of microbial-feeding animals and nitrogen availability in the soil. We established a 12-wk microcosm study of Plantago lanceolata plants growing in autoclaved soil, into which we constructed a simplified microfood-web including saprotrophic bacteria and fungi and their nematode feeders. We found that fertilization, defoliation and inoculation of the mycorrhizal fungus all decreased P. lanceolata root growth and that fertilization increased leaf production. Plant inflorescence growth was decreased by defoliation and increased by fertilization and AMF inoculation. These results suggest a negative influence of the treatments on P. lanceolata belowground biomass allocation. Of the soil organisms, AMF root colonization decreased with fertilization and increased with defoliation. Fertilization decreased numbers of bacterial-feeding nematodes, probably because fertilized plants produced less root mass. On the other hand, bacterial feeders were more abundant when associated with defoliated than non-defoliated plants despite defoliated plants having less root mass. The AMF inoculation per se increased the abundance of fungal feeders, but the reduced and increased root AM colonization rates of fertilized and defoliated plants, respectively, were not reflected in the numbers of fungal feeders. We found no evidence of plant-mediated effects of the AM fungus on bacterial feeders, and against our prediction, soil inorganic nitrogen concentrations were not positively associated with the concomitant abundances of microbial-feeding animals. Altogether, our results suggest that (1) while defoliation, fertilization and AMF inoculation all affect plant resource allocation, (2) they do not greatly interact with each other. Moreover, it appears that (3) while changes in plant resource allocation due to fertilization and defoliation can influence numbers of bacterial feeders in the soil, (4) these effects may not significantly alter mineral N concentrations in the soil.  相似文献   

10.
We measured the terpene concentration in pentane and water extracts from soil horizons (litter, organic, top and low mineral) and from roots growing in top and low mineral horizons on a distance gradient from Pinus halepensis L. trees growing alone on a grassland. Terpene concentrations in pentane were higher than in water extracts, although β-caryophyllene showed relatively high solubility in water. The litter and roots were important sources of terpenes in soil. Alpha-pinene dominated in roots growing in both “top” (A1) and “low” (B) mineral horizons (123 ± 36 μg g−1 or 14 ± 5 mg m−2) and roots in low mineral horizon (270 ± 91 μg g−1 or 7 ± 2 mg m−2). Beta-caryophyllene dominated in litter (1469 ± 331 μg g−1 or 2004 ± 481 mg m−2). Terpene concentration in soil decreased with increasing distance to the trunk. This is likely to be related to changes in litter and roots type on the distance gradient from pine to grass and herbs. The relative contributions of all compounds, except α-pinene, were similar in the mineral soils and litter. This suggests that litter of P. halepensis is probably the main source of major terpene compounds. However, long-term emissions of α-pinene from P. halepensis roots might also contribute to α-pinene concentrations in rhizosphere soils.  相似文献   

11.
随着经济和社会的发展,土壤重金属污染对粮食安全及人类的身体健康构成了巨大的威胁,而目前对于土壤重金属污染的治理主要以植物修复为主。为了寻找适宜修复Cu、Pb复合污染土壤的牧草,采用盆栽试验法,将试验的植物设置9组处理:1组对照组(CK),不添加任何重金属盐;4组单一污染,即单一Cu低(Cu1,200 mg×kg-1)、高浓度(Cu2 400 mg×kg-1),单一Pb低(Pb1 300 mg×kg-1)、高浓度(Pb2 800 mg×kg-1);4组Cu、Pb复合污染(Cu1Pb1、Cu1Pb2、Cu2Pb1、Cu_2Pb_2)。通过比较紫花苜蓿(Medicago sativa)、黑麦草(Lolium perenne)、狼尾草(Pennisetum alopecuroides)的适应能力和富集特征,研究了这3种常见牧草植物对受Cu、Pb复合污染土壤的修复效果。结果表明:1)紫花苜蓿地上部和根部生物量均在Pb1处理组时最大,显著高于其他处理组;黑麦草地上部生物量在Cu1Pb1处理组最大,根部生物量在Pb1处理组最大;狼尾草地上部生物量在Cu_2Pb_2处理组最大,根部生物量在Cu2处理组最大。2)Cu单一污染下,狼尾草抗性系数最大;Pb单一污染下,紫花苜蓿抗性系数最大;Cu-Pb复合污染下,狼尾草的抗性系数较大。高浓度Cu处理组3种牧草植物的地上部生物量、根部生物量和抗性系数均呈现:狼尾草黑麦草紫花苜蓿,且狼尾草显著大于黑麦草和紫花苜蓿。3)种植3种牧草植物后,土壤重金属Cu、Pb含量均有所降低。在一定浓度下,土壤Cu-Pb重金属间会相互促进对方在牧草植物中的吸收。4)3种牧草中紫花苜蓿地上部对Cu的富集系数在Cu_2Pb_2处理组最大,达1.61;黑麦草根部对Cu的富集系数在Cu_2Pb_2处理组最大,达3.80;3种牧草地上部和根部对Pb的富集系数只在黑麦草根部的Cu1Pb1处理组时大于1,达1.46。5)黑麦草对Pb的吸收能力较强,且主要积累在根系;紫花苜蓿对Cu-Pb复合污染综合修复效果最好。紫花苜蓿和黑麦草分别在Cu-Pb复合污染和Pb单一污染土壤中对Pb的转运系数大于1,分别为2.72和2.06,反映其对土壤中的Pb具有富集潜力。综合表明,黑麦草对重金属Pb具有较强的耐性,在Pb单一污染土壤的植物修复及尾矿废弃地的植被重建中,可优先作为选择的材料;紫花苜蓿对重金属Cu、Pb均具有较强的耐性,在重金属Cu单一或Cu-Pb复合污染土壤的植物修复及尾矿废弃地的植被重建中,可优先作为选择的材料。  相似文献   

12.
森林的水土保持效益包含水源涵养能力和土壤的侵蚀敏感性,为探讨基于坡面尺度林分因子对水土流失的影响,进一步揭示森林植被的水土保持效益机制,采用环刀法、EPIC模型等分别计算黄山松林、杉木林的水源涵养能力和土壤侵蚀因子.结果表明:(1)黄山松林的土壤容重在垂直剖面无明显差异,变化范围为0.66~1.10 g/cm3;杉木林...  相似文献   

13.
In the present study, the migration of nematodes was studied in columns filled with three materials of different textures and chemical properties. The role of soil pores that enable root-knot nematode (Meloidogyne incognita) second stage juveniles (J2) to escape rapid water flow in soil was demonstrated using columns filled with glass beads, sand or andisol that maintained a constant water flow. Under a constant flow flux of 36 cm h−1, living J2, dead J2 or anion bromine tracer (Br) was injected in the middle of the column and then drainage water equivalent to two pore volumes (PV) was collected. The passive transport of the anion tracer in water flow could be explained by a convection dispersion equation. The dead J2 showed a pattern similar to that of Br. However, the living J2 resisted movement in the water flow and remained in the column even at the highest water flow rate of 93.3 cm h−1 in glass beads. The mobility of living J2 was affected by the filling materials; the number of J2 passing through the column was much lower in the andisol-filled column than in the other two columns but the total number of J2 in drainage water was 5% or less of the number injected for all columns. We suggest that J2 were affected not only by soil water flow but also by soil pore structure and have the ability of withstanding or avoiding movement in soil water flow.  相似文献   

14.
Effects of the broad-spectrum insecticide fipronil were investigated on a non-target insect living in the soil, the springtail Folsomia candida Willem. Fipronil induced a significant reduction in juvenile production (PNEC = 250 μg kg−1 dry soil), which seemed to be linked with an impact on the first stages of springtail development: juveniles and 7-day-old adults. These young organisms have a thinner integument, a smaller mass body and a weaker detoxification efficiency and were more sensitive than adults (14 days old) to fipronil and phenylpyrazole derivatives. Contact toxicity for juveniles was measured (LC50(96 h)) giving the following values: fipronil, 450 μg l−1; sulfone-fipronil, 430 μg l−1; sulfide-fipronil, 160 μg l−1. F. candida organisms were able to avoid contaminated food because phenylpyrazoles decreased food appetency. However, F. candida could bioaccumulate fipronil through trans-tegumental penetration (BAF96 h = 160) and its high biotransformation rate inside springtail bodies (1 ng fipronil metabolized day−1 individual−1) was suspected to increase this process. Under natural conditions, phenylpyrazoles risk assessment on springtails seems to be weak due to their capacity of avoiding high contaminated zones and their biochemical tolerance to this class of insecticides.  相似文献   

15.
Radopholus similis is a worldwide endoparasitic nematode that greatly hampers banana (Musa acuminata, Cavendish subgroup) productivity. Earthworms are known to closely interact with above-ground and under-ground soil biota and particularly with plants and microfaunal communities. This study was aimed at investigating, under greenhouse conditions, the effects of the earthworm Pontoscolex corethrurus on banana growth and nutrient uptake, and assessing the influences of this earthworm on the development of an inoculated population of R. similis. Six-week-old tissue culture banana plants were submitted to four treatments: with P. corethrurus, R. similis, P. corethrurus+R. similis, and a control with no earthworms or nematodes. At the end of the experiment, the P. corethrurus treatments showed significantly higher leaf surface areas, shoot dry root weights, and root fresh weights than those without earthworms. This root growth enhancement probably contributed to the evident but non-significant decrease in the density of nematodes in the roots, even though earthworms did not reduce the total number of nematodes per whole root system. Moreover, the presence of earthworms slightly alleviated the severity of root damage. N bioavailability in the soil, along with N, Ca, and Mg content of banana plants, were also significantly increased in the presence of earthworms. Our results demonstrated that banana plant growth and nutrition were positively influenced by earthworms. Cropping practices that boost the development of earthworm communities in soil should therefore be promoted to enhance sustainability and to naturally alleviate nematode impact.  相似文献   

16.
The toxic effects of single and joint stress of Cd (cadmium) and Phe (phenanthrene) on enchytraeid Fridericia bulbosa were investigated by natural soil tests. Mortality of single and joint stress of Cd and Phe was significant (p < 0.01) except the lowest concentration of single pollutant. There was a positive correlation between mortality and the concentration of pollutant added to soil. Also, the more exposed to single or joint Cd and Phe, the more morality. For joint pollution, Cd was the main contributive factor of toxic effects, the different concentration and interaction of Cd and Phe significantly influenced mortality (p < 0.01). The joint effects of Cd and Phe were additive, after a 14-d exposure. When Phe was 0.1 mg kg−1 and 1.6 mg kg−1, the interactive effects between Cd and Phe were synergistic. When Phe was 25.6 mg kg−1, the interactive effects were antagonistic. It suggested that morality may be considered as a valuable and sensitive biomarker to diagnose adverse effects of Cd or Phe in soil environment.  相似文献   

17.
狗牙根与空心莲对水库消落带土壤氮磷释放影响的模拟   总被引:1,自引:1,他引:0  
通过水库水位涨落室内模拟试验,探究丹江口库区消落带优势物种狗牙根和空心莲2种草本植物对土壤氮磷释放过程影响。结果表明:(1)水淹结束后(32天),空心莲子草土壤TN、TP分别降低11.75%,25.28%,狗牙根分别降低3.62%,25.77%。(2)干湿交替环境主要影响土壤中NH_4~+-N、NO_3~--N和AP的含量的变化,对土壤中的TN、TP含量的影响较小。(3)狗牙根的死亡增加土壤TN、NH_4~+-N、TP量,即不耐淹植被过滤带虽然能净化径流中N、P等污染物,但截留的污染物和植物吸收的养分随着植物体的分解再次进入水体或土壤,无法达到有效防控农业面源污染的目的。该研究为丹江口水库利用植被缓冲带防控水体富营养化提供一定理论依据。  相似文献   

18.
We investigated the life cycle and habitat use of an arboreal collembolan species, Xenylla brevispina, in the canopy and soil of a conifer (Cryptomeria japonica D. Don) plantation. The adaptive significance of migration between arboreal and soil habitats in the maintenance of its population in relation to the vertical structure of the forest is discussed. We sampled dead branches with foliage in the canopy (canopy litter) and on the forest-floor (soil litter). X. brevispina had one generation a year throughout the 3 years of the study. The mean densities of X. brevispina were similar in the canopy litter (0.06 to 14.57 g−1 dry weight) and the soil litter (0.44 to 18.99 g−1 dry weight). Seasonal patterns of density and relative abundance indicate that individuals of X. brevispina in the canopy were closely associated with those in the soil. These results suggest that vertical migration between the canopy and the soil might be a strategy allowing X. brevispina to be a predominant collembolan species in this forest.  相似文献   

19.
The CO2 efflux from loamy Haplic Luvisol and heavy metal (HM) uptake by Zea mays L. were studied under increased HM contamination: Cd, Cu, and Ni up to 20, 1000, and 2500 mg kg−1 soil, respectively. Split-root system with contrasting HM concentrations in both soil halves was used to investigate root-mediated HM translocation in uncontaminated soil zones. To separate root-derived and soil organic matter (SOM)-derived CO2 efflux from soil, 14CO2 pulse labeling of 15-, 25-, and 35-days-old plants was applied. The CO2 evolution from the bare soil was 10.6 μg C–CO2 d−1 g−1 (32 kg C–CO2 d−1 ha−1) and was not affected by HM (except 2500 mg Ni kg−1). The average CO2 efflux from the soil with maize was about two times higher and amounted for about 22.0 μg C–CO2 d−1 g−1. Portion of assimilates respired in the rhizosphere decreased with plant development from 6.0 to 7.0% of assimilated C for 25-days-old Zea mays to 0.4–2.0% for 45-days-old maize. The effect of the HM on root-derived 14CO2 efflux increased with rising HM content in the following order: Cd < Cu < Ni. In Cu and Ni contaminated soils, shoot and root dry matter decreased to 70% and to 50% of the uncontaminated control, respectively. Plants contained much more HM in the roots than in the shoots. A split-root system with contrasting HM concentrations allowed to trace transport of mobile forms of HM by roots from contaminated soil half into the uncontaminated soil half. The portion of mobile HM forms in the soil (1 M NH4NO3 extract) increased with contamination and amounted to 9–16%, 2–6% and 1.5–3.5% for Cd, Cu, and Ni, respectively. Corresponding values for the easily available HM (1 M NH4OAc extract) were 22–52%, 1–20% and 5–8.5%. Heavy metal availability for plants decreased in the following order: Cd > Cu ≥ Ni. No increase of HM availability in the soil was found after maize cultivation.  相似文献   

20.
Dendrobaena octaedra (Lumbricidae) and Cognettia sphagnetorum (Enchytraeidae) are the two most dominating soil invertebrates in terms of biomass in boreal coniferous forest soils. A microcosm experiment was set up in order to study the influence of pH, moisture and resource addition on D. octaedra and C. sphagnetorum when both species are simultaneously present. Two kinds of coniferous forest humus were used as substrate, pine stand humus (pH 4.2), and spruce stand humus (pH 4.6); in the third treatment the pine stand humus was adjusted with slaked lime (CaOH2) to the same initial pH as the spruce stand humus. Each substrate was adjusted to water contents of 25%, 42.5% and 60% of WHC (referred to as ‘dry’, ‘moist’ and ‘wet’). In the second part of the experiment, spruce needle litter and birch leaf litter were separately added into the pine stand humus (‘moist’, unlimed) and compared with a control without litter. The microcosms were plastic jars with 75 g (d.m.) of humus, into which 4 specimens of D. octaedra and 70 specimens of C. sphagnetorum were added. D. octaedra showed the highest biomass and C. sphagnetorum the lowest biomass in the spruce stand humus with higher pH. Moisture did not affect earthworms, while C. sphagnetorum thrived best at the highest moisture. Addition of both kinds of litter increased the numbers and biomass of D. octaedra, while on C. sphagnetorum resource addition had little effect. The results help to explain the abundance of these two species in coniferous forests differing in soil acidity, moisture and fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号