首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
介绍了蛇形轧制的实现方式。运用数值模拟方法,在Deform 3D上分析单道次轧制过程中蛇形轧制和对称轧制7075铝合金厚板的流动速度及应力应变分布情况,分析异速比、上下轧辊错位量和压下量对蛇形轧制变形区内轧板等效应变和剪切应变的影响规律。结果表明:蛇形轧制中,由于下辊速度快,轧板下层金属流动比上层快,蛇形轧制中轧板下层等效变形大于上层,且随着异速比的增大,上下层金属变形差距增大;对称轧制中厚板心部的剪切应变几乎为0,蛇形轧制中由于有“搓轧区”的存在,厚板心部的剪切应变远大于对称轧制的,且随着异速比的增加和错位量的增加,轧板心部的剪切变形增大。这种附加的剪切变形有利于使变形向厚板心部渗透,从而改善厚板高向变形的不均匀性。  相似文献   

2.
蛇形/差温轧制可以细化钢板中心的奥氏体晶粒,促进变形向钢板心部渗透,改善钢板的微观组织和性能。为了满足轧机的设计和工艺参数设定要求,有必要建立蛇形/差温轧制力能参数模型。根据钢板厚度方向的温度梯度将钢板分为上、下表面层和中间层,结合蛇形轧制的变形区(后滑区、前滑区、搓轧区和反弯区),蛇形/差温轧制的变形区总共分为12个区域。考虑到非均布剪切应力和均布正应力,采用主应力法建立了同径异速蛇形/差温轧制轧制力和轧制力矩的解析模型。通过ANSYS软件对计算结果进行验证。结果表明,模型的计算结果与模拟结果相比,误差可以控制在10%以内,该模型可准确的预测同径异速蛇形/差温轧制过程中的轧制力和轧制力矩。  相似文献   

3.
采用ANSYS/LS-DYNA对厚规格钢板蛇形轧制过程进行了数值模拟研究,讨论了不同轧制方式和轧制工艺参数对钢板变形渗透性的影响规律,重点关注蛇形轧制对厚规格钢板心部变形的影响。结果表明:蛇形轧制中钢板上下表面金属流动的速度差会导致钢板在厚度方向上产生强烈的塑性变形,促进变形向钢板心部渗透,且钢板心部的等效应变随着异速比的增加而增大;增加压下量可显著增大钢板心部的等效应变,且对改善钢板厚度方向上的不均匀变形也有显著作用;摩擦系数对钢板变形的影响主要集中于钢板表面,对钢板心部变形的影响甚小;错位量和轧制速度对钢板厚度方向上的等效应变影响甚小。  相似文献   

4.
蛇形轧制作为一种新型的轧制工艺为高性能厚铝板生产提供了一种新方法,但是传统的异步轧制弯曲曲率模型不能用于蛇形轧制,蛇形轧制缺少精准的轧后曲率计算模型。根据变形区的特征及中性点的位置,确定了变形区组成及其存在边界条件;塑性变形区最多可分成4个区,对不同组成情况的变形区进行了分析,建立了各种情况下单位压力和上、下部分累积剪应变偏差模型,在此基础上建立了剪切应变引起的弯曲曲率模型,根据流动准则建立了轴向应变引起的弯曲曲率模型,最终建立了不同辊径比下的蛇形轧制的弯曲曲率模型。考虑到厚度方向变形的不均匀性,在建模过程中引入均匀系数E,使模型更加精确。采用Ansys模拟和实验数据进行了模型精度的间接验证。结果表明,与模拟和间接实验结果相比,最大和最小相对误差分别为10.71%和0.34%,证实了模型精度,可应用于弯曲曲率预测及控制;同时研究了不同工艺参数(偏移量、辊径比、压下量、工件初始厚度等)对弯曲曲率的影响规律。研究结果为厚规格铝板蛇形轧制生产提供重要理论和技术支持。  相似文献   

5.
蛇形轧制作为一种新型的轧制工艺为高性能厚铝板生产提供了一种新方法,但是传统的异步轧制弯曲曲率模型不能用于蛇形轧制,蛇形轧制缺少精准的轧后曲率计算模型。根据变形区的特征及中性点的位置,确定了变形区组成及其存在边界条件;塑性变形区最多可分成4个区,对不同组成情况的变形区进行了分析,建立了各种情况下单位压力和上、下部分累积剪应变偏差模型,在此基础上建立了剪切应变引起的弯曲曲率模型,根据流动准则建立了轴向应变引起的弯曲曲率模型,最终建立了不同辊径比下的蛇形轧制的弯曲曲率模型。考虑到厚度方向变形的不均匀性,在建模过程中引入均匀系数E,使模型更加精确。采用Ansys模拟和实验数据进行了模型精度的间接验证。结果表明,与模拟和间接实验结果相比,最大和最小相对误差分别为10.71%和0.34%,证实了模型精度,可应用于弯曲曲率预测及控制;同时研究了不同工艺参数(偏移量、辊径比、压下量、工件初始厚度等)对弯曲曲率的影响规律。研究结果为厚规格铝板蛇形轧制生产提供重要理论和技术支持。  相似文献   

6.
为提高碳钢/不锈钢板材轧制复合界面结合强度并降低轧后弯曲,采用ANSYS LS-DYNA有限元软件模拟了碳钢/不锈钢在1200℃开轧温度下的同速异径蛇形轧制复合过程,分析了不同压下率、辊径比、错位量与初始板厚等对轧后板材变形行为的影响规律,并进行了轧制复合实验,验证了有限元模拟的准确性。结果表明,与同步轧制和异步轧制相比,同速异径蛇形复合轧制能提高轧后板材界面结合强度并降低轧后弯曲。增大压下率可提高轧后板材界面的结合强度和轧后层厚比,且随压下率和辊径比的增大,轧后板材均出现反向弯曲,表明存在合适工况使轧后板材平直,如当初始板厚为20 mm,压下率为40%,错位量为5 mm,辊径比为1.15~1.20,初始层厚比为0.25~0.33时,轧后板材接近平直。  相似文献   

7.
异步轧制技术   总被引:2,自引:0,他引:2       下载免费PDF全文
<正> 异步轧制是两个工作辊圆周速度不等,使轧制变形区产生一种搓轧变形的新的轧制技术。它有两种基本形式:一是辊径相同,转速不同(异径异步);二是转速相同,辊径不同(异速异步)。其生产工艺过程基本上和同步轧制相同。如冷轧带钢的工艺过程为表面准备、冷轧、热处理、冷轧、成品检验、上油包装。  相似文献   

8.
介绍了龙形轧制方法,运用大变形热力耦合有限元法分析了龙形轧制和对称轧制铝合金厚板变形区内轧件的变形情况,比较了龙形轧制和对称轧制条件下轧板不同位置剪切应变的分布情况,并研究了上下轧辊错位量、异速比、摩擦系数和压下量对轧板心部剪切变形的影响。结果表明:对称轧制中厚板心部的剪切应变几乎为0;龙形轧制中由于有"搓轧区"存在,厚板心部的剪切应变远远大于对称轧制,且心部的剪切应变随着轧辊错位量、异速比、摩擦系数和压下量的增大而增大。为了获得较大的剪切应变同时保证较小的弯曲曲率,在龙形轧制中应合理选择这些工艺参数。  相似文献   

9.
在传统轧钢生产方式中,轧钢机接触轧件的2只轧辊(以下称为工作辊)其辊径一般是相同的。在轧制时若轧辊上下配置是对称的,则可称之为“对称同径轧制”,如常见的2辊、4辊、6辊、12辊、20辊轧机等等;若轧制时上下轧辊不对称布置,即称之为“不对称同径轧制”,如3辊、5辊、HC轧机等等。同径轧制技术一直沿用至今。但随着人类科技进步及对轧制理论的深入研究,人们发现为解决某一特殊矛盾的需要,突破传统观念采取对称或不对称异径轧制技术可取得意  相似文献   

10.
针对冷轧铜铝双层板金属的变形特征以及各轧制工艺下界面残余应力的分布情况,采用有限元计算方法,分别将轧制速度、异径同步、异径异步各工艺产生的界面残余应力进行分析。研究结果表明,冷轧铜铝双层板的复合变形过程可分为4部分;铜板复合面的应变直接影响复合效果;异径同步轧制铜铝复合板时,随着辊径比的增大,铜板复合面的总变形量增大,当辊径比大于1.6时,总变形的增量不明显,辊径比取1.4~1.6时,残余应力较小;异径异步轧制铜铝复合板时,随着辊径比的增大,铜板复合面的总变形量增大,轧制速比取1.2~1.4时,残余应力较小。  相似文献   

11.
采用ABAQUS软件建立了AA7050铝合金板材异径异步轧制过程的有限元模型并进行了模拟,研究了不同辊径及压下率下该合金轧板的弯曲行为,并对比了异径异步轧制与对称轧制轧板的变形特征及轧辊受力情况。结果显示:异径异步轧制可以得到平直轧板,且能提高轧板的应变及其沿法向分布的均匀性,但并不是所有异速比下的异径异步轧制都能降低轧制力。  相似文献   

12.
根据蛇形轧制的受力特点变形区最多可划分为四个不同的区域:I区(后滑区)、II区(搓轧区)、III区(前滑区)和IV区(反弯变形区),根据中性点位置的不同变形区将分为三种不同的情况:I, II, III和IV; I, II和IV; II和IV。根据流动准则计算出各情况下由剪切应变和轴向应变所引起的弯曲曲率,并利用主应力法建立蛇形轧制弯曲曲率的数学计算模型。进行蛇形轧制有限元模拟,将计算结果与理论结果进行对比,结果表明,文中所建立的理论模型误差可以控制在0.3%~12%以内,根据理论模型进行计算与分析,得到了工艺参数(错位量、异速比、压下量、初始板厚)对厚板弯曲曲率的影响规律。  相似文献   

13.
咬入角是影响坯料能否正常被轧辊咬入并轧制出优质板材的重要因素。采用有限元分析软件MSC.Marc模拟了四辊可逆式轧机进行板材热轧的过程,分析了不同情况下咬入角对轧制力、应变场、应力场分布的影响,并反映了轧制过程中的塑性变形规律。结果表明,模拟结果与实际相符,且在合理的角度范围内,改变压下量时19.87°的咬入角和改变半径时18.1°的咬入角应力应变分布比较均匀,板材成形质量较好。  相似文献   

14.
在厚板生产过程中轧件前端出现了波浪弯现象。对波浪弯前端位置和波浪弯周期的特点进行了分析。提取咬入后上下辊的辊速,使用有限元模拟软件对咬入后的轧件进行了轧制模拟,得出波浪弯是由于咬入后上下辊速存在周期波动而产生的。并通过现场雪橇控制调整,减轻了波浪弯。  相似文献   

15.
严明  周又吾 《轧钢》2022,39(2):92-95
针对宝武鄂钢4 300 mm宽厚板轧机轧制高强度厚规格钢板出现的“搓衣板”和“蛇形弯”板形缺陷问题,对其产生原因进行了分析。结果表明: “搓衣板”板形缺陷的形成是由于轧机机架精度不够造成轧辊辊系不稳定,高强度钢板在轧制过程中上下表面金属变形不一致而导致的,同时由于钢板头部下扣,使钢板在轧制延伸时受阻,加剧了整板“搓衣板”板形缺陷的形成。轧机主电机负荷平衡功能的投入会干预到上下主电机速度的给定,造成钢板“蛇形弯”缺陷,同时由于轧机雪橇功能的过分使用会加剧该种板形缺陷的形成。为此,提出了加强轧机机架间隙精度的管理措施,有利于轧制过程中辊系的稳定;对钢板精轧阶段压下制度进行了优化,即末道次压下率为12%~17%时,可使钢板头部板形为单弧形上翘,不会产生“搓衣板”缺陷;对轧机主电机负荷平衡功能及雪橇功能进行了优化,减少了钢板咬入阶段上下主电机速度波动,有利于钢板头部“蛇形弯”的控制。上述措施实施后,厚规格高强度钢板板形明显改善,降低了生产成本,提升了宽厚板厂产品质量和市场竞争力。  相似文献   

16.
针对镁/铝板材轧制复合在轧后容易出现弯曲问题,提出了蛇形轧制复合工艺,以达到降低轧后弯曲曲率并提高界面结合强度的目的。利用ANSYS LS-DYNA有限元软件,研究了蛇形轧制复合过程中不同错位量、异速比、压下量、层厚比及轧制温度对轧后复合板的弯曲曲率的影响规律,并开展轧制复合实验,验证了有限元计算结果的准确性。结果表明,与异步轧制相比,蛇形轧制可有效降低轧后复合板弯曲曲率。相同轧制条件下,异步轧制轧后弯曲曲率随着异速比的增大而增大,随着压下量及层厚比的增大而减小。蛇形轧制错位量可对轧后弯曲抑制产生明显的效果,在一定范围内,复合板的弯曲曲率随错位量的增大而减小。当初始板厚为50 mm、层厚比为2:3、压下量为30 mm、轧制温度为400℃、异速比为1.05和错位量为30 mm时,轧后复合板接近平直。  相似文献   

17.
提出了一种基于斜轧原理的块体超细晶棒材剧烈塑性变形(SPD)成形法,称为3D-SPD法:利用特殊曲面锥形轧辊及导板,坯料从轧辊直径最大端咬入,采用超大送进角及径缩率等变形参数,构建了剧烈扭转压缩复合变形区,单位成形载荷为兆帕级,可实现块体等效应变大于6.5的SPD.建立了基于Oyane损伤准则的裂纹萌生控制模型,通过对不同变形条件下轧件心部损伤值的优化,有效抑制了 Mannesmann效应(ME),避免了裂纹的萌生.理论及实验证明:当辊面锥角5°、送进角24°、径缩率50%、温度700℃、椭圆度系数1.02以及轧辊转速40 r/min时,采用单道次轧制方式,可将直径50 mm的45钢轧制为直径25 mm的超细晶棒材,平均晶粒尺寸从46 μm细化至约1 μm,屈服强度和抗拉强度分别提升46%和42%.  相似文献   

18.
采用摆式轧制法的原因用一般轧机轧制时,带材是逐渐由厚轧薄的。要使难变形金属达到很大的压下量,则采用直径尽可能小的工作辊,但是,其结果会使工作辊的咬入条件变坏,并使工作辊的机械强度降低。人们曾用四辊轧机和行星轧机大部分地克服了这些缺点。用这类轧机轧制时压下率可达70~90%。但是,冷轧表面质量要求高的金属带材时,这类结构形式的轧机的使用范围也有一定的限制。例如,在行星轧机上,装在相对位置的工作辊必须  相似文献   

19.
通过有限(FEM)元速度场研究了冷轧铜铝双层板的复合过程,将该过程中金属的变形特征进行了分析,同时,将有限元计算结果与某工厂数据相结合,分析了轧制速度、压下率、异径同步、异径异步对铜铝双层板复合的影响。结果表明,速度场模型能够更有效地说明铜铝板的复合过程;轧制速度越大,变形区出口处复合面金属流动的同步性越差,复合强度越低;异径同步轧制铜铝复合板时,辊径比取1.4~1.6,变形区出口处复合面金属流动的同步性越好,复合强度较高;异径异步轧制铜铝复合板时,轧制速比取1.2,变形区出口处复合面金属流动的同步性越好,复合强度较高。  相似文献   

20.
与普通冷轧相比,平整轧制压下量很小,轧件的弹性变形和工作辊的弹性压扁对轧制压力分布有较大影响,通常的圆弧形轧辊轮廓假设不再合理。文章推导了分段二次曲线分布压力作用下轧辊弹性压扁量的计算模型,考虑轧制速度对变形抗力的影响,采用卡尔曼理论计算轧件的弹塑性变形,研究开发了冷轧带钢平整机轧制压力模型。轧制力计算值与实测值吻合精度高,计算速度快,表明,本模型可以用作平整轧机的轧制力设定模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号